decoder work

This commit is contained in:
Mitchell Hashimoto 2015-11-06 23:12:15 -08:00
parent 0c18c66fff
commit 9501fc5ad0
2 changed files with 293 additions and 247 deletions

View File

@ -4,11 +4,10 @@ import (
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"github.com/hashicorp/hcl/hcl"
"github.com/hashicorp/hcl/hcl/ast"
"github.com/hashicorp/hcl/hcl/token"
)
// This is the tag to use with structures to have settings for HCL
@ -27,21 +26,21 @@ func Decode(out interface{}, in string) error {
// DecodeObject is a lower-level version of Decode. It decodes a
// raw Object into the given output.
func DecodeObject(out interface{}, n *hcl.Object) error {
func DecodeObject(out interface{}, n *ast.File) error {
val := reflect.ValueOf(out)
if val.Kind() != reflect.Ptr {
return errors.New("result must be a pointer")
}
var d decoder
return d.decode("root", n, val.Elem())
return d.decode("root", n.Node, val.Elem())
}
type decoder struct {
stack []reflect.Kind
}
func (d *decoder) decode(name string, o *hcl.Object, result reflect.Value) error {
func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error {
k := result
// If we have an interface with a valid value, we use that
@ -65,24 +64,24 @@ func (d *decoder) decode(name string, o *hcl.Object, result reflect.Value) error
switch k.Kind() {
case reflect.Bool:
return d.decodeBool(name, o, result)
return d.decodeBool(name, node, result)
case reflect.Float64:
return d.decodeFloat(name, o, result)
return d.decodeFloat(name, node, result)
case reflect.Int:
return d.decodeInt(name, o, result)
return d.decodeInt(name, node, result)
case reflect.Interface:
// When we see an interface, we make our own thing
return d.decodeInterface(name, o, result)
return d.decodeInterface(name, node, result)
case reflect.Map:
return d.decodeMap(name, o, result)
return d.decodeMap(name, node, result)
case reflect.Ptr:
return d.decodePtr(name, o, result)
return d.decodePtr(name, node, result)
case reflect.Slice:
return d.decodeSlice(name, o, result)
return d.decodeSlice(name, node, result)
case reflect.String:
return d.decodeString(name, o, result)
return d.decodeString(name, node, result)
case reflect.Struct:
return d.decodeStruct(name, o, result)
return d.decodeStruct(name, node, result)
default:
return fmt.Errorf(
"%s: unknown kind to decode into: %s", name, k.Kind())
@ -91,52 +90,66 @@ func (d *decoder) decode(name string, o *hcl.Object, result reflect.Value) error
return nil
}
func (d *decoder) decodeBool(name string, o *hcl.Object, result reflect.Value) error {
switch o.Type {
case hcl.ValueTypeBool:
result.Set(reflect.ValueOf(o.Value.(bool)))
default:
return fmt.Errorf("%s: unknown type %v", name, o.Type)
}
func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
if n.Token.Type == token.BOOL {
v, err := strconv.ParseBool(n.Token.Text)
if err != nil {
return err
}
return nil
}
func (d *decoder) decodeFloat(name string, o *hcl.Object, result reflect.Value) error {
switch o.Type {
case hcl.ValueTypeFloat:
result.Set(reflect.ValueOf(o.Value.(float64)))
default:
return fmt.Errorf("%s: unknown type %v", name, o.Type)
}
return nil
}
func (d *decoder) decodeInt(name string, o *hcl.Object, result reflect.Value) error {
switch o.Type {
case hcl.ValueTypeInt:
result.Set(reflect.ValueOf(o.Value.(int)))
case hcl.ValueTypeString:
v, err := strconv.ParseInt(o.Value.(string), 0, 0)
if err != nil {
return err
result.SetBool(v)
return nil
}
result.SetInt(int64(v))
default:
return fmt.Errorf("%s: unknown type %v", name, o.Type)
}
return nil
return fmt.Errorf("%s: unknown type %t", name, node)
}
func (d *decoder) decodeInterface(name string, o *hcl.Object, result reflect.Value) error {
func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
if n.Token.Type == token.FLOAT {
v, err := strconv.ParseFloat(n.Token.Text, 64)
if err != nil {
return err
}
result.Set(reflect.ValueOf(v))
return nil
}
}
return fmt.Errorf("%s: unknown type %t", name, node)
}
func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
switch n.Token.Type {
case token.NUMBER:
fallthrough
case token.STRING:
v, err := strconv.ParseInt(n.Token.Text, 0, 64)
if err != nil {
return err
}
result.SetInt(int64(v))
return nil
}
}
return fmt.Errorf("%s: unknown type %t", name, node)
}
func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error {
var set reflect.Value
redecode := true
switch o.Type {
case hcl.ValueTypeObject:
switch n := node.(type) {
case *ast.ObjectList:
// If we're at the root or we're directly within a slice, then we
// decode objects into map[string]interface{}, otherwise we decode
// them into lists.
@ -153,30 +166,43 @@ func (d *decoder) decodeInterface(name string, o *hcl.Object, result reflect.Val
var temp []map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, int(o.Len()))
reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items))
set = result
}
case hcl.ValueTypeList:
case *ast.ObjectType:
var temp []map[string]interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, 1)
set = result
case *ast.ListType:
var temp []interface{}
tempVal := reflect.ValueOf(temp)
result := reflect.MakeSlice(
reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
set = result
case hcl.ValueTypeBool:
var result bool
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case hcl.ValueTypeFloat:
var result float64
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case hcl.ValueTypeInt:
var result int
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case hcl.ValueTypeString:
set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
case *ast.LiteralType:
switch n.Token.Type {
case token.BOOL:
var result bool
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.FLOAT:
var result float64
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.NUMBER:
var result int
set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
case token.STRING:
set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
default:
return fmt.Errorf(
"%s: cannot decode into interface: %T",
name, node)
}
default:
return fmt.Errorf(
"%s: cannot decode into interface: %T",
name, o)
name, node)
}
// Set the result to what its supposed to be, then reset
@ -186,7 +212,7 @@ func (d *decoder) decodeInterface(name string, o *hcl.Object, result reflect.Val
if redecode {
// Revisit the node so that we can use the newly instantiated
// thing and populate it.
if err := d.decode(name, o, result); err != nil {
if err := d.decode(name, node, result); err != nil {
return err
}
}
@ -194,9 +220,18 @@ func (d *decoder) decodeInterface(name string, o *hcl.Object, result reflect.Val
return nil
}
func (d *decoder) decodeMap(name string, o *hcl.Object, result reflect.Value) error {
if o.Type != hcl.ValueTypeObject {
return fmt.Errorf("%s: not an object type for map (%v)", name, o.Type)
func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error {
if item, ok := node.(*ast.ObjectItem); ok {
node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
}
if ot, ok := node.(*ast.ObjectType); ok {
node = ot.List
}
n, ok := node.(*ast.ObjectList)
if !ok {
return fmt.Errorf("%s: not an object type for map (%T)", name, node)
}
// If we have an interface, then we can address the interface,
@ -222,33 +257,48 @@ func (d *decoder) decodeMap(name string, o *hcl.Object, result reflect.Value) er
}
// Go through each element and decode it.
for _, o := range o.Elem(false) {
if o.Value == nil {
done := make(map[string]struct{})
for _, item := range n.Items {
if item.Val == nil {
continue
}
for _, o := range o.Elem(true) {
// Make the field name
fieldName := fmt.Sprintf("%s.%s", name, o.Key)
// Get the key we're dealing with, which is the first item
keyStr := item.Keys[0].Token.Value().(string)
// Get the key/value as reflection values
key := reflect.ValueOf(o.Key)
val := reflect.Indirect(reflect.New(resultElemType))
// If we have a pre-existing value in the map, use that
oldVal := resultMap.MapIndex(key)
if oldVal.IsValid() {
val.Set(oldVal)
}
// Decode!
if err := d.decode(fieldName, o, val); err != nil {
return err
}
// Set the value on the map
resultMap.SetMapIndex(key, val)
// If we've already processed this key, then ignore it
if _, ok := done[keyStr]; ok {
continue
}
// Determine the value. If we have more than one key, then we
// get the objectlist of only these keys.
itemVal := item.Val
if len(item.Keys) > 1 {
itemVal = n.Prefix(keyStr)
done[keyStr] = struct{}{}
}
// Make the field name
fieldName := fmt.Sprintf("%s.%s", name, keyStr)
// Get the key/value as reflection values
key := reflect.ValueOf(keyStr)
val := reflect.Indirect(reflect.New(resultElemType))
// If we have a pre-existing value in the map, use that
oldVal := resultMap.MapIndex(key)
if oldVal.IsValid() {
val.Set(oldVal)
}
// Decode!
if err := d.decode(fieldName, itemVal, val); err != nil {
return err
}
// Set the value on the map
resultMap.SetMapIndex(key, val)
}
// Set the final map if we can
@ -256,13 +306,13 @@ func (d *decoder) decodeMap(name string, o *hcl.Object, result reflect.Value) er
return nil
}
func (d *decoder) decodePtr(name string, o *hcl.Object, result reflect.Value) error {
func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error {
// Create an element of the concrete (non pointer) type and decode
// into that. Then set the value of the pointer to this type.
resultType := result.Type()
resultElemType := resultType.Elem()
val := reflect.New(resultElemType)
if err := d.decode(name, o, reflect.Indirect(val)); err != nil {
if err := d.decode(name, node, reflect.Indirect(val)); err != nil {
return err
}
@ -270,7 +320,7 @@ func (d *decoder) decodePtr(name string, o *hcl.Object, result reflect.Value) er
return nil
}
func (d *decoder) decodeSlice(name string, o *hcl.Object, result reflect.Value) error {
func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error {
// If we have an interface, then we can address the interface,
// but not the slice itself, so get the element but set the interface
set := result
@ -287,197 +337,192 @@ func (d *decoder) decodeSlice(name string, o *hcl.Object, result reflect.Value)
resultSliceType, 0, 0)
}
// Determine how we're doing this
expand := true
switch o.Type {
case hcl.ValueTypeObject:
expand = false
default:
// Array or anything else: we expand values and take it all
// Figure out the items we'll be copying into the slice
var items []ast.Node
switch n := node.(type) {
case *ast.ObjectList:
items = make([]ast.Node, len(n.Items))
for i, item := range n.Items {
items[i] = item
}
case *ast.ObjectType:
items = []ast.Node{n}
}
i := 0
for _, o := range o.Elem(expand) {
if items == nil {
return fmt.Errorf("unknown slice type: %T", node)
}
for i, item := range items {
fieldName := fmt.Sprintf("%s[%d]", name, i)
// Decode
val := reflect.Indirect(reflect.New(resultElemType))
if err := d.decode(fieldName, o, val); err != nil {
if err := d.decode(fieldName, item, val); err != nil {
return err
}
// Append it onto the slice
result = reflect.Append(result, val)
i += 1
}
set.Set(result)
return nil
}
func (d *decoder) decodeString(name string, o *hcl.Object, result reflect.Value) error {
switch o.Type {
case hcl.ValueTypeInt:
result.Set(reflect.ValueOf(
strconv.FormatInt(int64(o.Value.(int)), 10)).Convert(result.Type()))
case hcl.ValueTypeString:
result.Set(reflect.ValueOf(o.Value.(string)).Convert(result.Type()))
default:
return fmt.Errorf("%s: unknown type to string: %v", name, o.Type)
func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error {
switch n := node.(type) {
case *ast.LiteralType:
switch n.Token.Type {
case token.NUMBER:
fallthrough
case token.STRING:
result.Set(reflect.ValueOf(n.Token.Value()))
return nil
}
}
return nil
return fmt.Errorf("%s: unknown type %t", name, node)
}
func (d *decoder) decodeStruct(name string, o *hcl.Object, result reflect.Value) error {
if o.Type != hcl.ValueTypeObject {
return fmt.Errorf("%s: not an object type for struct (%v)", name, o.Type)
}
func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error {
return nil
/*
item, ok := node.(*ast.ObjectItem)
if !ok {
return fmt.Errorf("%s: not an object type for map (%t)", name, node)
}
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = result
val, ok := node.(*ast.ObjectList)
if !ok {
return fmt.Errorf("%s: not an object type for map (%t)", name, node)
}
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
fields := make(map[*reflect.StructField]reflect.Value)
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = result
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
fields := make(map[*reflect.StructField]reflect.Value)
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
if fieldType.Anonymous {
fieldKind := fieldType.Type.Kind()
if fieldKind != reflect.Struct {
return fmt.Errorf(
"%s: unsupported type to struct: %s",
fieldType.Name, fieldKind)
}
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
// We have an embedded field. We "squash" the fields down
// if specified in the tag.
squash := false
tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
if fieldType.Anonymous {
fieldKind := fieldType.Type.Kind()
if fieldKind != reflect.Struct {
return fmt.Errorf(
"%s: unsupported type to struct: %s",
fieldType.Name, fieldKind)
}
// We have an embedded field. We "squash" the fields down
// if specified in the tag.
squash := false
tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
}
}
if squash {
structs = append(
structs, result.FieldByName(fieldType.Name))
continue
}
}
if squash {
structs = append(
structs, result.FieldByName(fieldType.Name))
// Normal struct field, store it away
fields[&fieldType] = structVal.Field(i)
}
}
usedKeys := make(map[string]struct{})
decodedFields := make([]string, 0, len(fields))
decodedFieldsVal := make([]reflect.Value, 0)
unusedKeysVal := make([]reflect.Value, 0)
for fieldType, field := range fields {
if !field.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !field.CanSet() {
continue
}
fieldName := fieldType.Name
// This is whether or not we expand the object into its children
// later.
expand := false
tagValue := fieldType.Tag.Get(tagName)
tagParts := strings.SplitN(tagValue, ",", 2)
if len(tagParts) >= 2 {
switch tagParts[1] {
case "expand":
expand = true
case "decodedFields":
decodedFieldsVal = append(decodedFieldsVal, field)
continue
case "key":
field.SetString(item.Keys[0].Token.Text)
continue
case "unusedKeys":
unusedKeysVal = append(unusedKeysVal, field)
continue
}
}
// Normal struct field, store it away
fields[&fieldType] = structVal.Field(i)
}
}
usedKeys := make(map[string]struct{})
decodedFields := make([]string, 0, len(fields))
decodedFieldsVal := make([]reflect.Value, 0)
unusedKeysVal := make([]reflect.Value, 0)
for fieldType, field := range fields {
if !field.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !field.CanSet() {
continue
}
fieldName := fieldType.Name
// This is whether or not we expand the object into its children
// later.
expand := false
tagValue := fieldType.Tag.Get(tagName)
tagParts := strings.SplitN(tagValue, ",", 2)
if len(tagParts) >= 2 {
switch tagParts[1] {
case "expand":
expand = true
case "decodedFields":
decodedFieldsVal = append(decodedFieldsVal, field)
continue
case "key":
field.SetString(o.Key)
continue
case "unusedKeys":
unusedKeysVal = append(unusedKeysVal, field)
continue
if tagParts[0] != "" {
fieldName = tagParts[0]
}
}
if tagParts[0] != "" {
fieldName = tagParts[0]
}
// Find the element matching this name
obj := o.Get(fieldName, true)
if obj == nil {
// Find the element matching this name
continue
}
/*
obj := o.Get(fieldName, true)
if obj == nil {
continue
}
// Track the used key
usedKeys[fieldName] = struct{}{}
// Track the used key
usedKeys[fieldName] = struct{}{}
// Create the field name and decode. We range over the elements
// because we actually want the value.
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
for _, obj := range obj.Elem(expand) {
if err := d.decode(fieldName, obj, field); err != nil {
return err
}
}
decodedFields = append(decodedFields, fieldType.Name)
}
if len(decodedFieldsVal) > 0 {
// Sort it so that it is deterministic
sort.Strings(decodedFields)
for _, v := range decodedFieldsVal {
v.Set(reflect.ValueOf(decodedFields))
}
}
// If we want to know what keys are unused, compile that
if len(unusedKeysVal) > 0 {
/*
unusedKeys := make([]string, 0, int(obj.Len())-len(usedKeys))
for _, elem := range obj.Elem {
k := elem.Key()
if _, ok := usedKeys[k]; !ok {
unusedKeys = append(unusedKeys, k)
// Create the field name and decode. We range over the elements
// because we actually want the value.
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
for _, obj := range obj.Elem(expand) {
if err := d.decode(fieldName, obj, field); err != nil {
return err
}
}
}
if len(unusedKeys) == 0 {
unusedKeys = nil
}
decodedFields = append(decodedFields, fieldType.Name)
}
for _, v := range unusedKeysVal {
v.Set(reflect.ValueOf(unusedKeys))
if len(decodedFieldsVal) > 0 {
// Sort it so that it is deterministic
sort.Strings(decodedFields)
for _, v := range decodedFieldsVal {
v.Set(reflect.ValueOf(decodedFields))
}
*/
}
}
*/
return nil
}

View File

@ -3,17 +3,18 @@ package hcl
import (
"fmt"
"github.com/hashicorp/hcl/hcl"
"github.com/hashicorp/hcl/hcl/ast"
hclParser "github.com/hashicorp/hcl/hcl/parser"
"github.com/hashicorp/hcl/json"
)
// Parse parses the given input and returns the root object.
//
// The input format can be either HCL or JSON.
func Parse(input string) (*hcl.Object, error) {
func Parse(input string) (*ast.File, error) {
switch lexMode(input) {
case lexModeHcl:
return hcl.Parse(input)
return hclParser.Parse([]byte(input))
case lexModeJson:
return json.Parse(input)
}