package hclwrite import ( "sort" "github.com/hashicorp/hcl2/hcl" "github.com/hashicorp/hcl2/hcl/hclsyntax" ) // Our "parser" here is actually not doing any parsing of its own. Instead, // it leans on the native parser in hclsyntax, and then uses the source ranges // from the AST to partition the raw token sequence to match the raw tokens // up to AST nodes. // // This strategy feels somewhat counter-intuitive, since most of the work the // parser does is thrown away here, but this strategy is chosen because the // normal parsing work done by hclsyntax is considered to be the "main case", // while modifying and re-printing source is more of an edge case, used only // in ancillary tools, and so it's good to keep all the main parsing logic // with the main case but keep all of the extra complexity of token wrangling // out of the main parser, which is already rather complex just serving the // use-cases it already serves. // // If the parsing step produces any errors, the returned File is nil because // we can't reliably extract tokens from the partial AST produced by an // erroneous parse. func parse(src []byte, filename string, start hcl.Pos) (*File, hcl.Diagnostics) { file, diags := hclsyntax.ParseConfig(src, filename, start) if diags.HasErrors() { return nil, diags } // To do our work here, we use the "native" tokens (those from hclsyntax) // to match against source ranges in the AST, but ultimately produce // slices from our sequence of "writer" tokens, which contain only // *relative* position information that is more appropriate for // transformation/writing use-cases. nativeTokens, diags := hclsyntax.LexConfig(src, filename, start) if diags.HasErrors() { // should never happen, since we would've caught these diags in // the first call above. return nil, diags } writerTokens := writerTokens(nativeTokens) from := inputTokens{ nativeTokens: nativeTokens, writerTokens: writerTokens, } before, root, after := parseBody(file.Body.(*hclsyntax.Body), from) return &File{ Name: filename, SrcBytes: src, Body: root, AllTokens: &TokenSeq{ before.Seq(), root.AllTokens, after.Seq(), }, }, nil } type inputTokens struct { nativeTokens hclsyntax.Tokens writerTokens Tokens } func (it inputTokens) Partition(rng hcl.Range) (before, within, after inputTokens) { start, end := partitionTokens(it.nativeTokens, rng) before = it.Slice(0, start) within = it.Slice(start, end) after = it.Slice(end, len(it.nativeTokens)) return } // PartitionIncludeComments is like Partition except the returned "within" // range includes any lead and line comments associated with the range. func (it inputTokens) PartitionIncludingComments(rng hcl.Range) (before, within, after inputTokens) { start, end := partitionTokens(it.nativeTokens, rng) start = partitionLeadCommentTokens(it.nativeTokens[:start]) _, afterNewline := partitionLineEndTokens(it.nativeTokens[end:]) end += afterNewline before = it.Slice(0, start) within = it.Slice(start, end) after = it.Slice(end, len(it.nativeTokens)) return } // PartitionBlockItem is similar to PartitionIncludeComments but it returns // the comments as separate token sequences so that they can be captured into // AST attributes. It makes assumptions that apply only to block items, so // should not be used for other constructs. func (it inputTokens) PartitionBlockItem(rng hcl.Range) (before, leadComments, within, lineComments, newline, after inputTokens) { before, within, after = it.Partition(rng) before, leadComments = before.PartitionLeadComments() lineComments, newline, after = after.PartitionLineEndTokens() return } func (it inputTokens) PartitionLeadComments() (before, within inputTokens) { start := partitionLeadCommentTokens(it.nativeTokens) before = it.Slice(0, start) within = it.Slice(start, len(it.nativeTokens)) return } func (it inputTokens) PartitionLineEndTokens() (comments, newline, after inputTokens) { afterComments, afterNewline := partitionLineEndTokens(it.nativeTokens) comments = it.Slice(0, afterComments) newline = it.Slice(afterComments, afterNewline) after = it.Slice(afterNewline, len(it.nativeTokens)) return } func (it inputTokens) Slice(start, end int) inputTokens { // When we slice, we create a new slice with no additional capacity because // we expect that these slices will be mutated in order to insert // new code into the AST, and we want to ensure that a new underlying // array gets allocated in that case, rather than writing into some // following slice and corrupting it. return inputTokens{ nativeTokens: it.nativeTokens[start:end:end], writerTokens: it.writerTokens[start:end:end], } } func (it inputTokens) Len() int { return len(it.nativeTokens) } func (it inputTokens) Seq() *TokenSeq { return &TokenSeq{it.writerTokens} } func (it inputTokens) Types() []hclsyntax.TokenType { ret := make([]hclsyntax.TokenType, len(it.nativeTokens)) for i, tok := range it.nativeTokens { ret[i] = tok.Type } return ret } // parseBody locates the given body within the given input tokens and returns // the resulting *Body object as well as the tokens that appeared before and // after it. func parseBody(nativeBody *hclsyntax.Body, from inputTokens) (inputTokens, *Body, inputTokens) { before, within, after := from.PartitionIncludingComments(nativeBody.SrcRange) // The main AST doesn't retain the original source ordering of the // body items, so we need to reconstruct that ordering by inspecting // their source ranges. nativeItems := make([]hclsyntax.Node, 0, len(nativeBody.Attributes)+len(nativeBody.Blocks)) for _, nativeAttr := range nativeBody.Attributes { nativeItems = append(nativeItems, nativeAttr) } for _, nativeBlock := range nativeBody.Blocks { nativeItems = append(nativeItems, nativeBlock) } sort.Sort(nativeNodeSorter{nativeItems}) body := &Body{ IndentLevel: 0, // TODO: deal with this } remain := within for _, nativeItem := range nativeItems { beforeItem, item, afterItem := parseBodyItem(nativeItem, remain) if beforeItem.Len() > 0 { body.AppendUnstructuredTokens(beforeItem.Seq()) } body.AppendItem(item) remain = afterItem } if remain.Len() > 0 { body.AppendUnstructuredTokens(remain.Seq()) } return before, body, after } func parseBodyItem(nativeItem hclsyntax.Node, from inputTokens) (inputTokens, Node, inputTokens) { before, leadComments, within, lineComments, newline, after := from.PartitionBlockItem(nativeItem.Range()) var item Node switch tItem := nativeItem.(type) { case *hclsyntax.Attribute: item = parseAttribute(tItem, within, leadComments, lineComments, newline) case *hclsyntax.Block: item = parseBlock(tItem, within, leadComments, lineComments, newline) default: // should never happen if caller is behaving panic("unsupported native item type") } return before, item, after } func parseAttribute(nativeAttr *hclsyntax.Attribute, from, leadComments, lineComments, newline inputTokens) *Attribute { var allTokens TokenSeq attr := &Attribute{} if leadComments.Len() > 0 { attr.LeadCommentTokens = leadComments.Seq() allTokens = append(allTokens, attr.LeadCommentTokens) } before, nameTokens, from := from.Partition(nativeAttr.NameRange) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } attr.NameTokens = nameTokens.Seq() allTokens = append(allTokens, attr.NameTokens) before, equalsTokens, from := from.Partition(nativeAttr.EqualsRange) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } attr.EqualsTokens = equalsTokens.Seq() allTokens = append(allTokens, attr.EqualsTokens) before, exprTokens, from := from.Partition(nativeAttr.Expr.Range()) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } attr.Expr = parseExpression(nativeAttr.Expr, exprTokens) allTokens = append(allTokens, attr.Expr.AllTokens) if lineComments.Len() > 0 { attr.LineCommentTokens = lineComments.Seq() allTokens = append(allTokens, attr.LineCommentTokens) } if newline.Len() > 0 { attr.EOLTokens = newline.Seq() allTokens = append(allTokens, attr.EOLTokens) } // Collect any stragglers, though there shouldn't be any if from.Len() > 0 { allTokens = append(allTokens, from.Seq()) } attr.AllTokens = &allTokens return attr } func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *Block { var allTokens TokenSeq block := &Block{} if leadComments.Len() > 0 { block.LeadCommentTokens = leadComments.Seq() allTokens = append(allTokens, block.LeadCommentTokens) } before, typeTokens, from := from.Partition(nativeBlock.TypeRange) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } block.TypeTokens = typeTokens.Seq() allTokens = append(allTokens, block.TypeTokens) for _, rng := range nativeBlock.LabelRanges { var labelTokens inputTokens before, labelTokens, from = from.Partition(rng) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } seq := labelTokens.Seq() block.LabelTokens = append(block.LabelTokens, seq) *(block.LabelTokensFlat) = append(*(block.LabelTokensFlat), seq) allTokens = append(allTokens, seq) } before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } block.OBraceTokens = oBrace.Seq() allTokens = append(allTokens, block.OBraceTokens) // We go a bit out of order here: we go hunting for the closing brace // so that we have a delimited body, but then we'll deal with the body // before we actually append the closing brace and any straggling tokens // that appear after it. bodyTokens, cBrace, from := from.Partition(nativeBlock.CloseBraceRange) before, body, after := parseBody(nativeBlock.Body, bodyTokens) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } block.Body = body allTokens = append(allTokens, body.AllTokens) if after.Len() > 0 { allTokens = append(allTokens, after.Seq()) } block.CBraceTokens = cBrace.Seq() allTokens = append(allTokens, block.CBraceTokens) // stragglers if after.Len() > 0 { allTokens = append(allTokens, from.Seq()) } if lineComments.Len() > 0 { // blocks don't actually have line comments, so we'll just treat // them as extra stragglers allTokens = append(allTokens, lineComments.Seq()) } if newline.Len() > 0 { block.EOLTokens = newline.Seq() allTokens = append(allTokens, block.EOLTokens) } block.AllTokens = &allTokens return block } func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *Expression { var allTokens TokenSeq nativeVars := nativeExpr.Variables() var absTraversals []*Traversal for _, nativeTraversal := range nativeVars { var traversalTokens TokenSeq var before, traversalFrom inputTokens before, traversalFrom, from = from.Partition(nativeTraversal.SourceRange()) if before.Len() > 0 { allTokens = append(allTokens, before.Seq()) } var steps []*Traverser for _, nativeStep := range nativeTraversal { var stepFrom inputTokens before, stepFrom, traversalFrom = traversalFrom.Partition(nativeStep.SourceRange()) stepTokens := stepFrom.Seq() if before.Len() > 0 { traversalTokens = append(traversalTokens, before.Seq()) } traversalTokens = append(traversalTokens, stepTokens) step := &Traverser{ AllTokens: stepTokens, Logical: nativeStep, } steps = append(steps, step) } // Attach any straggler that don't belong to a step to the traversal itself. if traversalFrom.Len() > 0 { traversalTokens = append(traversalTokens, traversalFrom.Seq()) } allTokens = append(allTokens, &traversalTokens) absTraversals = append(absTraversals, &Traversal{ AllTokens: &traversalTokens, Steps: steps, }) } // Attach any stragglers that don't belong to a traversal to the expression // itself. In an expression with no traversals at all, this is just the // entirety of "from". if from.Len() > 0 { allTokens = append(allTokens, from.Seq()) } return &Expression{ AllTokens: &allTokens, AbsTraversals: absTraversals, } } // writerTokens takes a sequence of tokens as produced by the main hclsyntax // package and transforms it into an equivalent sequence of tokens using // this package's own token model. // // The resulting list contains the same number of tokens and uses the same // indices as the input, allowing the two sets of tokens to be correlated // by index. func writerTokens(nativeTokens hclsyntax.Tokens) Tokens { // Ultimately we want a slice of token _pointers_, but since we can // predict how much memory we're going to devote to tokens we'll allocate // it all as a single flat buffer and thus give the GC less work to do. tokBuf := make([]Token, len(nativeTokens)) var lastByteOffset int for i, mainToken := range nativeTokens { // Create a copy of the bytes so that we can mutate without // corrupting the original token stream. bytes := make([]byte, len(mainToken.Bytes)) copy(bytes, mainToken.Bytes) tokBuf[i] = Token{ Type: mainToken.Type, Bytes: bytes, // We assume here that spaces are always ASCII spaces, since // that's what the scanner also assumes, and thus the number // of bytes skipped is also the number of space characters. SpacesBefore: mainToken.Range.Start.Byte - lastByteOffset, } lastByteOffset = mainToken.Range.End.Byte } // Now make a slice of pointers into the previous slice. ret := make(Tokens, len(tokBuf)) for i := range ret { ret[i] = &tokBuf[i] } return ret } // partitionTokens takes a sequence of tokens and a hcl.Range and returns // two indices within the token sequence that correspond with the range // boundaries, such that the slice operator could be used to produce // three token sequences for before, within, and after respectively: // // start, end := partitionTokens(toks, rng) // before := toks[:start] // within := toks[start:end] // after := toks[end:] // // This works best when the range is aligned with token boundaries (e.g. // because it was produced in terms of the scanner's result) but if that isn't // true then it will make a best effort that may produce strange results at // the boundaries. // // Native hclsyntax tokens are used here, because they contain the necessary // absolute position information. However, since writerTokens produces a // correlatable sequence of writer tokens, the resulting indices can be // used also to index into its result, allowing the partitioning of writer // tokens to be driven by the partitioning of native tokens. // // The tokens are assumed to be in source order and non-overlapping, which // will be true if the token sequence from the scanner is used directly. func partitionTokens(toks hclsyntax.Tokens, rng hcl.Range) (start, end int) { // We us a linear search here because we assume tha in most cases our // target range is close to the beginning of the sequence, and the seqences // are generally small for most reasonable files anyway. for i := 0; ; i++ { if i >= len(toks) { // No tokens for the given range at all! return len(toks), len(toks) } if toks[i].Range.Start.Byte >= rng.Start.Byte { start = i break } } for i := start; ; i++ { if i >= len(toks) { // The range "hangs off" the end of the token sequence return start, len(toks) } if toks[i].Range.Start.Byte >= rng.End.Byte { end = i // end marker is exclusive break } } return start, end } // partitionLeadCommentTokens takes a sequence of tokens that is assumed // to immediately precede a construct that can have lead comment tokens, // and returns the index into that sequence where the lead comments begin. // // Lead comments are defined as whole lines containing only comment tokens // with no blank lines between. If no such lines are found, the returned // index will be len(toks). func partitionLeadCommentTokens(toks hclsyntax.Tokens) int { // single-line comments (which is what we're interested in here) // consume their trailing newline, so we can just walk backwards // until we stop seeing comment tokens. for i := len(toks) - 1; i >= 0; i-- { if toks[i].Type != hclsyntax.TokenComment { return i + 1 } } return 0 } // partitionLineEndTokens takes a sequence of tokens that is assumed // to immediately follow a construct that can have a line comment, and // returns first the index where any line comments end and then second // the index immediately after the trailing newline. // // Line comments are defined as comments that appear immediately after // a construct on the same line where its significant tokens ended. // // Since single-line comment tokens (# and //) include the newline that // terminates them, in the presence of these the two returned indices // will be the same since the comment itself serves as the line end. func partitionLineEndTokens(toks hclsyntax.Tokens) (afterComment, afterNewline int) { for i := 0; i < len(toks); i++ { tok := toks[i] if tok.Type != hclsyntax.TokenComment { switch tok.Type { case hclsyntax.TokenNewline: return i, i + 1 case hclsyntax.TokenEOF: // Although this is valid, we mustn't include the EOF // itself as our "newline" or else strange things will // happen when we try to append new items. return i, i default: // If we have well-formed input here then nothing else should be // possible. This path should never happen, because we only try // to extract tokens from the sequence if the parser succeeded, // and it should catch this problem itself. panic("malformed line trailers: expected only comments and newlines") } } if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' { // Newline at the end of a single-line comment serves both as // the end of comments *and* the end of the line. return i + 1, i + 1 } } return len(toks), len(toks) } // lexConfig uses the hclsyntax scanner to get a token stream and then // rewrites it into this package's token model. // // Any errors produced during scanning are ignored, so the results of this // function should be used with care. func lexConfig(src []byte) Tokens { mainTokens, _ := hclsyntax.LexConfig(src, "", hcl.Pos{Byte: 0, Line: 1, Column: 1}) return writerTokens(mainTokens) }