hcl/json/scanner.go

307 lines
7.4 KiB
Go

package json
import (
"fmt"
"github.com/apparentlymart/go-textseg/v13/textseg"
"github.com/hashicorp/hcl/v2"
)
//go:generate stringer -type tokenType scanner.go
type tokenType rune
const (
tokenBraceO tokenType = '{'
tokenBraceC tokenType = '}'
tokenBrackO tokenType = '['
tokenBrackC tokenType = ']'
tokenComma tokenType = ','
tokenColon tokenType = ':'
tokenKeyword tokenType = 'K'
tokenString tokenType = 'S'
tokenNumber tokenType = 'N'
tokenEOF tokenType = '␄'
tokenInvalid tokenType = 0
tokenEquals tokenType = '=' // used only for reminding the user of JSON syntax
)
type token struct {
Type tokenType
Bytes []byte
Range hcl.Range
}
// scan returns the primary tokens for the given JSON buffer in sequence.
//
// The responsibility of this pass is to just mark the slices of the buffer
// as being of various types. It is lax in how it interprets the multi-byte
// token types keyword, string and number, preferring to capture erroneous
// extra bytes that we presume the user intended to be part of the token
// so that we can generate more helpful diagnostics in the parser.
func scan(buf []byte, start pos) []token {
var tokens []token
p := start
for {
if len(buf) == 0 {
tokens = append(tokens, token{
Type: tokenEOF,
Bytes: nil,
Range: posRange(p, p),
})
return tokens
}
buf, p = skipWhitespace(buf, p)
if len(buf) == 0 {
tokens = append(tokens, token{
Type: tokenEOF,
Bytes: nil,
Range: posRange(p, p),
})
return tokens
}
start = p
first := buf[0]
switch {
case first == '{' || first == '}' || first == '[' || first == ']' || first == ',' || first == ':' || first == '=':
p.Pos.Column++
p.Pos.Byte++
tokens = append(tokens, token{
Type: tokenType(first),
Bytes: buf[0:1],
Range: posRange(start, p),
})
buf = buf[1:]
case first == '"':
var tokBuf []byte
tokBuf, buf, p = scanString(buf, p)
tokens = append(tokens, token{
Type: tokenString,
Bytes: tokBuf,
Range: posRange(start, p),
})
case byteCanStartNumber(first):
var tokBuf []byte
tokBuf, buf, p = scanNumber(buf, p)
tokens = append(tokens, token{
Type: tokenNumber,
Bytes: tokBuf,
Range: posRange(start, p),
})
case byteCanStartKeyword(first):
var tokBuf []byte
tokBuf, buf, p = scanKeyword(buf, p)
tokens = append(tokens, token{
Type: tokenKeyword,
Bytes: tokBuf,
Range: posRange(start, p),
})
default:
tokens = append(tokens, token{
Type: tokenInvalid,
Bytes: buf[:1],
Range: start.Range(1, 1),
})
// If we've encountered an invalid then we might as well stop
// scanning since the parser won't proceed beyond this point.
// We insert a synthetic EOF marker here to match the expectations
// of consumers of this data structure.
p.Pos.Column++
p.Pos.Byte++
tokens = append(tokens, token{
Type: tokenEOF,
Bytes: nil,
Range: posRange(p, p),
})
return tokens
}
}
}
func byteCanStartNumber(b byte) bool {
switch b {
// We are slightly more tolerant than JSON requires here since we
// expect the parser will make a stricter interpretation of the
// number bytes, but we specifically don't allow 'e' or 'E' here
// since we want the scanner to treat that as the start of an
// invalid keyword instead, to produce more intelligible error messages.
case '-', '+', '.', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
return true
default:
return false
}
}
func scanNumber(buf []byte, start pos) ([]byte, []byte, pos) {
// The scanner doesn't check that the sequence of digit-ish bytes is
// in a valid order. The parser must do this when decoding a number
// token.
var i int
p := start
Byte:
for i = 0; i < len(buf); i++ {
switch buf[i] {
case '-', '+', '.', 'e', 'E', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
p.Pos.Byte++
p.Pos.Column++
default:
break Byte
}
}
return buf[:i], buf[i:], p
}
func byteCanStartKeyword(b byte) bool {
switch {
// We allow any sequence of alphabetical characters here, even though
// JSON is more constrained, so that we can collect what we presume
// the user intended to be a single keyword and then check its validity
// in the parser, where we can generate better diagnostics.
// So e.g. we want to be able to say:
// unrecognized keyword "True". Did you mean "true"?
case isAlphabetical(b):
return true
default:
return false
}
}
func scanKeyword(buf []byte, start pos) ([]byte, []byte, pos) {
var i int
p := start
Byte:
for i = 0; i < len(buf); i++ {
b := buf[i]
switch {
case isAlphabetical(b) || b == '_':
p.Pos.Byte++
p.Pos.Column++
default:
break Byte
}
}
return buf[:i], buf[i:], p
}
func scanString(buf []byte, start pos) ([]byte, []byte, pos) {
// The scanner doesn't validate correct use of escapes, etc. It pays
// attention to escapes only for the purpose of identifying the closing
// quote character. It's the parser's responsibility to do proper
// validation.
//
// The scanner also doesn't specifically detect unterminated string
// literals, though they can be identified in the parser by checking if
// the final byte in a string token is the double-quote character.
// Skip the opening quote symbol
i := 1
p := start
p.Pos.Byte++
p.Pos.Column++
escaping := false
Byte:
for i < len(buf) {
b := buf[i]
switch {
case b == '\\':
escaping = !escaping
p.Pos.Byte++
p.Pos.Column++
i++
case b == '"':
p.Pos.Byte++
p.Pos.Column++
i++
if !escaping {
break Byte
}
escaping = false
case b < 32:
break Byte
default:
// Advance by one grapheme cluster, so that we consider each
// grapheme to be a "column".
// Ignoring error because this scanner cannot produce errors.
advance, _, _ := textseg.ScanGraphemeClusters(buf[i:], true)
p.Pos.Byte += advance
p.Pos.Column++
i += advance
escaping = false
}
}
return buf[:i], buf[i:], p
}
func skipWhitespace(buf []byte, start pos) ([]byte, pos) {
var i int
p := start
Byte:
for i = 0; i < len(buf); i++ {
switch buf[i] {
case ' ':
p.Pos.Byte++
p.Pos.Column++
case '\n':
p.Pos.Byte++
p.Pos.Column = 1
p.Pos.Line++
case '\r':
// For the purpose of line/column counting we consider a
// carriage return to take up no space, assuming that it will
// be paired up with a newline (on Windows, for example) that
// will account for both of them.
p.Pos.Byte++
case '\t':
// We arbitrarily count a tab as if it were two spaces, because
// we need to choose _some_ number here. This means any system
// that renders code on-screen with markers must itself treat
// tabs as a pair of spaces for rendering purposes, or instead
// use the byte offset and back into its own column position.
p.Pos.Byte++
p.Pos.Column += 2
default:
break Byte
}
}
return buf[i:], p
}
type pos struct {
Filename string
Pos hcl.Pos
}
func (p *pos) Range(byteLen, charLen int) hcl.Range {
start := p.Pos
end := p.Pos
end.Byte += byteLen
end.Column += charLen
return hcl.Range{
Filename: p.Filename,
Start: start,
End: end,
}
}
func posRange(start, end pos) hcl.Range {
return hcl.Range{
Filename: start.Filename,
Start: start.Pos,
End: end.Pos,
}
}
func (t token) GoString() string {
return fmt.Sprintf("json.token{json.%s, []byte(%q), %#v}", t.Type, t.Bytes, t.Range)
}
func isAlphabetical(b byte) bool {
return (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z')
}