hcl/zcl/zclsyntax/scan_tokens.rl
Martin Atkins 59a1343216 zclsyntax: allow numeric "attributes" inside attr-only splats
Terraform interprets HIL variables in such a way that it allows numeric
attribute names which then get interpreted as numeric indices into a
list. This is used to work around the fact that the splat expressions
don't work for the index operator.

zcl has "full splats" that _do_ support the index operator, but to allow
old Terraform configs to be processed by zcl we'll accept this special
case within attribute-only-splats only.

For the moment this is a special exception made by this specific
implementation of zcl rather than part of the spec, since it's
specifically a pragmatic Terraform migration strategy, but it might get
upgraded to full spec status later if we end up needing to support it
in other host languages.

This requires the scanner to be a little more picky about the ending
of numeric literals, so that they won't absorb the trailing period after
the number in foo.*.baz.1.baz . This is okay because the spec doesn't
allow trailing periods anyway, and this is not actually a change in
final behavior because the parser was already catching this situation
and rejecting it at a later point.
2017-06-24 09:39:16 -07:00

343 lines
11 KiB
Ragel

package zclsyntax
import (
"bytes"
"github.com/zclconf/go-zcl/zcl"
)
// This file is generated from scan_tokens.rl. DO NOT EDIT.
%%{
# (except you are actually in scan_tokens.rl here, so edit away!)
machine zcltok;
write data;
}%%
func scanTokens(data []byte, filename string, start zcl.Pos, mode scanMode) []Token {
f := &tokenAccum{
Filename: filename,
Bytes: data,
Pos: start,
}
%%{
include UnicodeDerived "unicode_derived.rl";
UTF8Cont = 0x80 .. 0xBF;
AnyUTF8 = (
0x00..0x7F |
0xC0..0xDF . UTF8Cont |
0xE0..0xEF . UTF8Cont . UTF8Cont |
0xF0..0xF7 . UTF8Cont . UTF8Cont . UTF8Cont
);
BrokenUTF8 = any - AnyUTF8;
NumberLitContinue = (digit|'.'|('e'|'E') ('+'|'-')? digit);
NumberLit = digit ("" | (NumberLitContinue - '.') | (NumberLitContinue* (NumberLitContinue - '.')));
Ident = ID_Start (ID_Continue | '-')*;
# Symbols that just represent themselves are handled as a single rule.
SelfToken = "[" | "]" | "(" | ")" | "." | "," | "*" | "/" | "+" | "-" | "=" | "<" | ">" | "!" | "?" | ":" | "\n" | "&" | "|" | "~" | "^" | ";" | "`";
EqualOp = "==";
NotEqual = "!=";
GreaterThanEqual = ">=";
LessThanEqual = "<=";
LogicalAnd = "&&";
LogicalOr = "||";
Ellipsis = "...";
FatArrow = "=>";
Newline = '\r' ? '\n';
EndOfLine = Newline;
BeginStringTmpl = '"';
BeginHeredocTmpl = '<<' ('-')? Ident Newline;
Comment = (
("#" (any - EndOfLine)* EndOfLine) |
("//" (any - EndOfLine)* EndOfLine) |
("/*" any* "*/")
);
# Tabs are not valid, but we accept them in the scanner and mark them
# as tokens so that we can produce diagnostics advising the user to
# use spaces instead.
Tabs = 0x09+;
# Note: zclwrite assumes that only ASCII spaces appear between tokens,
# and uses this assumption to recreate the spaces between tokens by
# looking at byte offset differences.
Spaces = ' '+;
action beginStringTemplate {
token(TokenOQuote);
fcall stringTemplate;
}
action endStringTemplate {
token(TokenCQuote);
fret;
}
action beginHeredocTemplate {
token(TokenOHeredoc);
// the token is currently the whole heredoc introducer, like
// <<EOT or <<-EOT, followed by a newline. We want to extract
// just the "EOT" portion that we'll use as the closing marker.
marker := data[ts+2:te-1]
if marker[0] == '-' {
marker = marker[1:]
}
if marker[len(marker)-1] == '\r' {
marker = marker[:len(marker)-1]
}
heredocs = append(heredocs, heredocInProgress{
Marker: marker,
StartOfLine: true,
})
fcall heredocTemplate;
}
action heredocLiteralEOL {
// This action is called specificially when a heredoc literal
// ends with a newline character.
// This might actually be our end marker.
topdoc := &heredocs[len(heredocs)-1]
if topdoc.StartOfLine {
maybeMarker := bytes.TrimSpace(data[ts:te])
if bytes.Equal(maybeMarker, topdoc.Marker) {
token(TokenCHeredoc);
heredocs = heredocs[:len(heredocs)-1]
fret;
}
}
topdoc.StartOfLine = true;
token(TokenStringLit);
}
action heredocLiteralMidline {
// This action is called when a heredoc literal _doesn't_ end
// with a newline character, e.g. because we're about to enter
// an interpolation sequence.
heredocs[len(heredocs)-1].StartOfLine = false;
token(TokenStringLit);
}
action bareTemplateLiteral {
token(TokenStringLit);
}
action beginTemplateInterp {
token(TokenTemplateInterp);
braces++;
retBraces = append(retBraces, braces);
if len(heredocs) > 0 {
heredocs[len(heredocs)-1].StartOfLine = false;
}
fcall main;
}
action beginTemplateControl {
token(TokenTemplateControl);
braces++;
retBraces = append(retBraces, braces);
if len(heredocs) > 0 {
heredocs[len(heredocs)-1].StartOfLine = false;
}
fcall main;
}
action openBrace {
token(TokenOBrace);
braces++;
}
action closeBrace {
if len(retBraces) > 0 && retBraces[len(retBraces)-1] == braces {
token(TokenTemplateSeqEnd);
braces--;
retBraces = retBraces[0:len(retBraces)-1]
fret;
} else {
token(TokenCBrace);
braces--;
}
}
action closeTemplateSeqEatWhitespace {
// Only consume from the retBraces stack and return if we are at
// a suitable brace nesting level, otherwise things will get
// confused. (Not entering this branch indicates a syntax error,
// which we will catch in the parser.)
if len(retBraces) > 0 && retBraces[len(retBraces)-1] == braces {
token(TokenTemplateSeqEnd);
braces--;
retBraces = retBraces[0:len(retBraces)-1]
fret;
} else {
// We intentionally generate a TokenTemplateSeqEnd here,
// even though the user apparently wanted a brace, because
// we want to allow the parser to catch the incorrect use
// of a ~} to balance a generic opening brace, rather than
// a template sequence.
token(TokenTemplateSeqEnd);
braces--;
}
}
TemplateInterp = "${" ("~")?;
TemplateControl = "%{" ("~")?;
EndStringTmpl = '"';
StringLiteralChars = (AnyUTF8 - ("\r"|"\n"));
TemplateStringLiteral = (
('$' ^'{') |
('%' ^'{') |
('\\' StringLiteralChars) |
(StringLiteralChars - ("$" | '%' | '"'))
)+;
HeredocStringLiteral = (
('$' ^'{') |
('%' ^'{') |
(StringLiteralChars - ("$" | '%'))
)*;
BareStringLiteral = (
('$' ^'{') |
('%' ^'{') |
(StringLiteralChars - ("$" | '%'))
)* Newline?;
stringTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
EndStringTmpl => endStringTemplate;
TemplateStringLiteral => { token(TokenQuotedLit); };
AnyUTF8 => { token(TokenInvalid); };
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
heredocTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
HeredocStringLiteral EndOfLine => heredocLiteralEOL;
HeredocStringLiteral => heredocLiteralMidline;
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
bareTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
BareStringLiteral => bareTemplateLiteral;
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
main := |*
Spaces => {};
NumberLit => { token(TokenNumberLit) };
Ident => { token(TokenIdent) };
Comment => { token(TokenComment) };
Newline => { token(TokenNewline) };
EqualOp => { token(TokenEqualOp); };
NotEqual => { token(TokenNotEqual); };
GreaterThanEqual => { token(TokenGreaterThanEq); };
LessThanEqual => { token(TokenLessThanEq); };
LogicalAnd => { token(TokenAnd); };
LogicalOr => { token(TokenOr); };
Ellipsis => { token(TokenEllipsis); };
FatArrow => { token(TokenFatArrow); };
SelfToken => { selfToken() };
"{" => openBrace;
"}" => closeBrace;
"~}" => closeTemplateSeqEatWhitespace;
BeginStringTmpl => beginStringTemplate;
BeginHeredocTmpl => beginHeredocTemplate;
Tabs => { token(TokenTabs) };
BrokenUTF8 => { token(TokenBadUTF8) };
AnyUTF8 => { token(TokenInvalid) };
*|;
}%%
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
ts := 0
te := 0
act := 0
eof := pe
var stack []int
var top int
var cs int // current state
switch mode {
case scanNormal:
cs = zcltok_en_main
case scanTemplate:
cs = zcltok_en_bareTemplate
default:
panic("invalid scanMode")
}
braces := 0
var retBraces []int // stack of brace levels that cause us to use fret
var heredocs []heredocInProgress // stack of heredocs we're currently processing
%%{
prepush {
stack = append(stack, 0);
}
postpop {
stack = stack[:len(stack)-1];
}
}%%
// Make Go compiler happy
_ = ts
_ = te
_ = act
_ = eof
token := func (ty TokenType) {
f.emitToken(ty, ts, te)
}
selfToken := func () {
b := data[ts:te]
if len(b) != 1 {
// should never happen
panic("selfToken only works for single-character tokens")
}
f.emitToken(TokenType(b[0]), ts, te)
}
%%{
write init nocs;
write exec;
}%%
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which we'll
// deal with as an invalid.
if cs < zcltok_first_final {
f.emitToken(TokenInvalid, p, len(data))
}
// We always emit a synthetic EOF token at the end, since it gives the
// parser position information for an "unexpected EOF" diagnostic.
f.emitToken(TokenEOF, len(data), len(data))
return f.Tokens
}