hcl/ext/dynblock/expand_body.go
Martin Atkins 3dfebdfc45 ext/dynblock: Stub out contents when for_each is unknown
Previously our behavior for an unknown for_each was to produce a single
block whose content was the result of evaluating content with the iterator
set to cty.DynamicVal. That produced a reasonable idea of the content, but
the number of blocks in the result was still not accurate, and that can
present a problem for applications that use unknown values to predict
the overall shape of a not-yet-complete structure.

We can't return an unknown block via the HCL API, but to make that
situation easier to recognize by callers we'll now go a little further and
force _all_ of the leaf attributes in such a block to be unknown values,
even if they are constants in the configuration. This allows a calling
application that is making predictions to use a single object whose
leaves are all unknown as a heuristic to recognize what is effectively
an unknown set of blocks.

This is still not a perfect heuristic, but is the best we can do here
within the HCL API assumptions. A fundamental assumption of the HCL API
is that it's possible to walk the block structure without evaluating any
expressions and the dynamic block extension is intentionally subverting
that assumption, so some oddities are to be expected. Calling applications
that need a fully reliable sense of the final structure should not use
the dynamic block extension.
2019-04-30 11:30:46 -07:00

263 lines
8.7 KiB
Go

package dynblock
import (
"fmt"
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
)
// expandBody wraps another hcl.Body and expands any "dynamic" blocks found
// inside whenever Content or PartialContent is called.
type expandBody struct {
original hcl.Body
forEachCtx *hcl.EvalContext
iteration *iteration // non-nil if we're nested inside another "dynamic" block
// These are used with PartialContent to produce a "remaining items"
// body to return. They are nil on all bodies fresh out of the transformer.
//
// Note that this is re-implemented here rather than delegating to the
// existing support required by the underlying body because we need to
// retain access to the entire original body on subsequent decode operations
// so we can retain any "dynamic" blocks for types we didn't take consume
// on the first pass.
hiddenAttrs map[string]struct{}
hiddenBlocks map[string]hcl.BlockHeaderSchema
}
func (b *expandBody) Content(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Diagnostics) {
extSchema := b.extendSchema(schema)
rawContent, diags := b.original.Content(extSchema)
blocks, blockDiags := b.expandBlocks(schema, rawContent.Blocks, false)
diags = append(diags, blockDiags...)
attrs := b.prepareAttributes(rawContent.Attributes)
content := &hcl.BodyContent{
Attributes: attrs,
Blocks: blocks,
MissingItemRange: b.original.MissingItemRange(),
}
return content, diags
}
func (b *expandBody) PartialContent(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Body, hcl.Diagnostics) {
extSchema := b.extendSchema(schema)
rawContent, _, diags := b.original.PartialContent(extSchema)
// We discard the "remain" argument above because we're going to construct
// our own remain that also takes into account remaining "dynamic" blocks.
blocks, blockDiags := b.expandBlocks(schema, rawContent.Blocks, true)
diags = append(diags, blockDiags...)
attrs := b.prepareAttributes(rawContent.Attributes)
content := &hcl.BodyContent{
Attributes: attrs,
Blocks: blocks,
MissingItemRange: b.original.MissingItemRange(),
}
remain := &expandBody{
original: b.original,
forEachCtx: b.forEachCtx,
iteration: b.iteration,
hiddenAttrs: make(map[string]struct{}),
hiddenBlocks: make(map[string]hcl.BlockHeaderSchema),
}
for name := range b.hiddenAttrs {
remain.hiddenAttrs[name] = struct{}{}
}
for typeName, blockS := range b.hiddenBlocks {
remain.hiddenBlocks[typeName] = blockS
}
for _, attrS := range schema.Attributes {
remain.hiddenAttrs[attrS.Name] = struct{}{}
}
for _, blockS := range schema.Blocks {
remain.hiddenBlocks[blockS.Type] = blockS
}
return content, remain, diags
}
func (b *expandBody) extendSchema(schema *hcl.BodySchema) *hcl.BodySchema {
// We augment the requested schema to also include our special "dynamic"
// block type, since then we'll get instances of it interleaved with
// all of the literal child blocks we must also include.
extSchema := &hcl.BodySchema{
Attributes: schema.Attributes,
Blocks: make([]hcl.BlockHeaderSchema, len(schema.Blocks), len(schema.Blocks)+len(b.hiddenBlocks)+1),
}
copy(extSchema.Blocks, schema.Blocks)
extSchema.Blocks = append(extSchema.Blocks, dynamicBlockHeaderSchema)
// If we have any hiddenBlocks then we also need to register those here
// so that a call to "Content" on the underlying body won't fail.
// (We'll filter these out again once we process the result of either
// Content or PartialContent.)
for _, blockS := range b.hiddenBlocks {
extSchema.Blocks = append(extSchema.Blocks, blockS)
}
// If we have any hiddenAttrs then we also need to register these, for
// the same reason as we deal with hiddenBlocks above.
if len(b.hiddenAttrs) != 0 {
newAttrs := make([]hcl.AttributeSchema, len(schema.Attributes), len(schema.Attributes)+len(b.hiddenAttrs))
copy(newAttrs, extSchema.Attributes)
for name := range b.hiddenAttrs {
newAttrs = append(newAttrs, hcl.AttributeSchema{
Name: name,
Required: false,
})
}
extSchema.Attributes = newAttrs
}
return extSchema
}
func (b *expandBody) prepareAttributes(rawAttrs hcl.Attributes) hcl.Attributes {
if len(b.hiddenAttrs) == 0 && b.iteration == nil {
// Easy path: just pass through the attrs from the original body verbatim
return rawAttrs
}
// Otherwise we have some work to do: we must filter out any attributes
// that are hidden (since a previous PartialContent call already saw these)
// and wrap the expressions of the inner attributes so that they will
// have access to our iteration variables.
attrs := make(hcl.Attributes, len(rawAttrs))
for name, rawAttr := range rawAttrs {
if _, hidden := b.hiddenAttrs[name]; hidden {
continue
}
if b.iteration != nil {
attr := *rawAttr // shallow copy so we can mutate it
attr.Expr = exprWrap{
Expression: attr.Expr,
i: b.iteration,
}
attrs[name] = &attr
} else {
// If we have no active iteration then no wrapping is required.
attrs[name] = rawAttr
}
}
return attrs
}
func (b *expandBody) expandBlocks(schema *hcl.BodySchema, rawBlocks hcl.Blocks, partial bool) (hcl.Blocks, hcl.Diagnostics) {
var blocks hcl.Blocks
var diags hcl.Diagnostics
for _, rawBlock := range rawBlocks {
switch rawBlock.Type {
case "dynamic":
realBlockType := rawBlock.Labels[0]
if _, hidden := b.hiddenBlocks[realBlockType]; hidden {
continue
}
var blockS *hcl.BlockHeaderSchema
for _, candidate := range schema.Blocks {
if candidate.Type == realBlockType {
blockS = &candidate
break
}
}
if blockS == nil {
// Not a block type that the caller requested.
if !partial {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported block type",
Detail: fmt.Sprintf("Blocks of type %q are not expected here.", realBlockType),
Subject: &rawBlock.LabelRanges[0],
})
}
continue
}
spec, specDiags := b.decodeSpec(blockS, rawBlock)
diags = append(diags, specDiags...)
if specDiags.HasErrors() {
continue
}
if spec.forEachVal.IsKnown() {
for it := spec.forEachVal.ElementIterator(); it.Next(); {
key, value := it.Element()
i := b.iteration.MakeChild(spec.iteratorName, key, value)
block, blockDiags := spec.newBlock(i, b.forEachCtx)
diags = append(diags, blockDiags...)
if block != nil {
// Attach our new iteration context so that attributes
// and other nested blocks can refer to our iterator.
block.Body = b.expandChild(block.Body, i)
blocks = append(blocks, block)
}
}
} else {
// If our top-level iteration value isn't known then we're forced
// to compromise since HCL doesn't have any concept of an
// "unknown block". In this case then, we'll produce a single
// dynamic block with the iterator values set to DynamicVal,
// which at least makes the potential for a block visible
// in our result, even though it's not represented in a fully-accurate
// way.
i := b.iteration.MakeChild(spec.iteratorName, cty.DynamicVal, cty.DynamicVal)
block, blockDiags := spec.newBlock(i, b.forEachCtx)
diags = append(diags, blockDiags...)
if block != nil {
block.Body = b.expandChild(block.Body, i)
// We additionally force all of the leaf attribute values
// in the result to be unknown so the calling application
// can, if necessary, use that as a heuristic to detect
// when a single nested block might be standing in for
// multiple blocks yet to be expanded. This retains the
// structure of the generated body but forces all of its
// leaf attribute values to be unknown.
block.Body = unknownBody{block.Body}
blocks = append(blocks, block)
}
}
default:
if _, hidden := b.hiddenBlocks[rawBlock.Type]; !hidden {
// A static block doesn't create a new iteration context, but
// it does need to inherit _our own_ iteration context in
// case it contains expressions that refer to our inherited
// iterators, or nested "dynamic" blocks.
expandedBlock := *rawBlock // shallow copy
expandedBlock.Body = b.expandChild(rawBlock.Body, b.iteration)
blocks = append(blocks, &expandedBlock)
}
}
}
return blocks, diags
}
func (b *expandBody) expandChild(child hcl.Body, i *iteration) hcl.Body {
chiCtx := i.EvalContext(b.forEachCtx)
ret := Expand(child, chiCtx)
ret.(*expandBody).iteration = i
return ret
}
func (b *expandBody) JustAttributes() (hcl.Attributes, hcl.Diagnostics) {
// blocks aren't allowed in JustAttributes mode and this body can
// only produce blocks, so we'll just pass straight through to our
// underlying body here.
return b.original.JustAttributes()
}
func (b *expandBody) MissingItemRange() hcl.Range {
return b.original.MissingItemRange()
}