c8c208e083
For now, this is the only way to set an attribute, and so attributes can only be set to literal values. Later this will be generalized so that this is just a helper wrapper around a "SetAttribute" method that just uses a given expression, which then helps by constructing the expression from the value first.
596 lines
20 KiB
Go
596 lines
20 KiB
Go
package hclwrite
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
|
|
"github.com/hashicorp/hcl2/hcl"
|
|
"github.com/hashicorp/hcl2/hcl/hclsyntax"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
// Our "parser" here is actually not doing any parsing of its own. Instead,
|
|
// it leans on the native parser in hclsyntax, and then uses the source ranges
|
|
// from the AST to partition the raw token sequence to match the raw tokens
|
|
// up to AST nodes.
|
|
//
|
|
// This strategy feels somewhat counter-intuitive, since most of the work the
|
|
// parser does is thrown away here, but this strategy is chosen because the
|
|
// normal parsing work done by hclsyntax is considered to be the "main case",
|
|
// while modifying and re-printing source is more of an edge case, used only
|
|
// in ancillary tools, and so it's good to keep all the main parsing logic
|
|
// with the main case but keep all of the extra complexity of token wrangling
|
|
// out of the main parser, which is already rather complex just serving the
|
|
// use-cases it already serves.
|
|
//
|
|
// If the parsing step produces any errors, the returned File is nil because
|
|
// we can't reliably extract tokens from the partial AST produced by an
|
|
// erroneous parse.
|
|
func parse(src []byte, filename string, start hcl.Pos) (*File, hcl.Diagnostics) {
|
|
file, diags := hclsyntax.ParseConfig(src, filename, start)
|
|
if diags.HasErrors() {
|
|
return nil, diags
|
|
}
|
|
|
|
// To do our work here, we use the "native" tokens (those from hclsyntax)
|
|
// to match against source ranges in the AST, but ultimately produce
|
|
// slices from our sequence of "writer" tokens, which contain only
|
|
// *relative* position information that is more appropriate for
|
|
// transformation/writing use-cases.
|
|
nativeTokens, diags := hclsyntax.LexConfig(src, filename, start)
|
|
if diags.HasErrors() {
|
|
// should never happen, since we would've caught these diags in
|
|
// the first call above.
|
|
return nil, diags
|
|
}
|
|
writerTokens := writerTokens(nativeTokens)
|
|
|
|
from := inputTokens{
|
|
nativeTokens: nativeTokens,
|
|
writerTokens: writerTokens,
|
|
}
|
|
|
|
before, root, after := parseBody(file.Body.(*hclsyntax.Body), from)
|
|
ret := &File{
|
|
inTree: newInTree(),
|
|
|
|
srcBytes: src,
|
|
body: root,
|
|
}
|
|
|
|
nodes := ret.inTree.children
|
|
nodes.Append(before.Tokens())
|
|
nodes.AppendNode(root)
|
|
nodes.Append(after.Tokens())
|
|
|
|
return ret, diags
|
|
}
|
|
|
|
type inputTokens struct {
|
|
nativeTokens hclsyntax.Tokens
|
|
writerTokens Tokens
|
|
}
|
|
|
|
func (it inputTokens) Partition(rng hcl.Range) (before, within, after inputTokens) {
|
|
start, end := partitionTokens(it.nativeTokens, rng)
|
|
before = it.Slice(0, start)
|
|
within = it.Slice(start, end)
|
|
after = it.Slice(end, len(it.nativeTokens))
|
|
return
|
|
}
|
|
|
|
func (it inputTokens) PartitionType(ty hclsyntax.TokenType) (before, within, after inputTokens) {
|
|
for i, t := range it.writerTokens {
|
|
if t.Type == ty {
|
|
return it.Slice(0, i), it.Slice(i, i+1), it.Slice(i+1, len(it.nativeTokens))
|
|
}
|
|
}
|
|
panic(fmt.Sprintf("didn't find any token of type %s", ty))
|
|
}
|
|
|
|
func (it inputTokens) PartitionTypeSingle(ty hclsyntax.TokenType) (before inputTokens, found *Token, after inputTokens) {
|
|
before, within, after := it.PartitionType(ty)
|
|
if within.Len() != 1 {
|
|
panic("PartitionType found more than one token")
|
|
}
|
|
return before, within.Tokens()[0], after
|
|
}
|
|
|
|
// PartitionIncludeComments is like Partition except the returned "within"
|
|
// range includes any lead and line comments associated with the range.
|
|
func (it inputTokens) PartitionIncludingComments(rng hcl.Range) (before, within, after inputTokens) {
|
|
start, end := partitionTokens(it.nativeTokens, rng)
|
|
start = partitionLeadCommentTokens(it.nativeTokens[:start])
|
|
_, afterNewline := partitionLineEndTokens(it.nativeTokens[end:])
|
|
end += afterNewline
|
|
|
|
before = it.Slice(0, start)
|
|
within = it.Slice(start, end)
|
|
after = it.Slice(end, len(it.nativeTokens))
|
|
return
|
|
|
|
}
|
|
|
|
// PartitionBlockItem is similar to PartitionIncludeComments but it returns
|
|
// the comments as separate token sequences so that they can be captured into
|
|
// AST attributes. It makes assumptions that apply only to block items, so
|
|
// should not be used for other constructs.
|
|
func (it inputTokens) PartitionBlockItem(rng hcl.Range) (before, leadComments, within, lineComments, newline, after inputTokens) {
|
|
before, within, after = it.Partition(rng)
|
|
before, leadComments = before.PartitionLeadComments()
|
|
lineComments, newline, after = after.PartitionLineEndTokens()
|
|
return
|
|
}
|
|
|
|
func (it inputTokens) PartitionLeadComments() (before, within inputTokens) {
|
|
start := partitionLeadCommentTokens(it.nativeTokens)
|
|
before = it.Slice(0, start)
|
|
within = it.Slice(start, len(it.nativeTokens))
|
|
return
|
|
}
|
|
|
|
func (it inputTokens) PartitionLineEndTokens() (comments, newline, after inputTokens) {
|
|
afterComments, afterNewline := partitionLineEndTokens(it.nativeTokens)
|
|
comments = it.Slice(0, afterComments)
|
|
newline = it.Slice(afterComments, afterNewline)
|
|
after = it.Slice(afterNewline, len(it.nativeTokens))
|
|
return
|
|
}
|
|
|
|
func (it inputTokens) Slice(start, end int) inputTokens {
|
|
// When we slice, we create a new slice with no additional capacity because
|
|
// we expect that these slices will be mutated in order to insert
|
|
// new code into the AST, and we want to ensure that a new underlying
|
|
// array gets allocated in that case, rather than writing into some
|
|
// following slice and corrupting it.
|
|
return inputTokens{
|
|
nativeTokens: it.nativeTokens[start:end:end],
|
|
writerTokens: it.writerTokens[start:end:end],
|
|
}
|
|
}
|
|
|
|
func (it inputTokens) Len() int {
|
|
return len(it.nativeTokens)
|
|
}
|
|
|
|
func (it inputTokens) Tokens() Tokens {
|
|
return it.writerTokens
|
|
}
|
|
|
|
func (it inputTokens) Types() []hclsyntax.TokenType {
|
|
ret := make([]hclsyntax.TokenType, len(it.nativeTokens))
|
|
for i, tok := range it.nativeTokens {
|
|
ret[i] = tok.Type
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// parseBody locates the given body within the given input tokens and returns
|
|
// the resulting *Body object as well as the tokens that appeared before and
|
|
// after it.
|
|
func parseBody(nativeBody *hclsyntax.Body, from inputTokens) (inputTokens, *node, inputTokens) {
|
|
before, within, after := from.PartitionIncludingComments(nativeBody.SrcRange)
|
|
|
|
// The main AST doesn't retain the original source ordering of the
|
|
// body items, so we need to reconstruct that ordering by inspecting
|
|
// their source ranges.
|
|
nativeItems := make([]hclsyntax.Node, 0, len(nativeBody.Attributes)+len(nativeBody.Blocks))
|
|
for _, nativeAttr := range nativeBody.Attributes {
|
|
nativeItems = append(nativeItems, nativeAttr)
|
|
}
|
|
for _, nativeBlock := range nativeBody.Blocks {
|
|
nativeItems = append(nativeItems, nativeBlock)
|
|
}
|
|
sort.Sort(nativeNodeSorter{nativeItems})
|
|
|
|
body := &Body{
|
|
inTree: newInTree(),
|
|
|
|
indentLevel: 0, // TODO: deal with this
|
|
items: newNodeSet(),
|
|
}
|
|
|
|
remain := within
|
|
for _, nativeItem := range nativeItems {
|
|
beforeItem, item, afterItem := parseBodyItem(nativeItem, remain)
|
|
|
|
if beforeItem.Len() > 0 {
|
|
body.AppendUnstructuredTokens(beforeItem.Tokens())
|
|
}
|
|
body.appendItemNode(item)
|
|
|
|
remain = afterItem
|
|
}
|
|
|
|
if remain.Len() > 0 {
|
|
body.AppendUnstructuredTokens(remain.Tokens())
|
|
}
|
|
|
|
return before, newNode(body), after
|
|
}
|
|
|
|
func parseBodyItem(nativeItem hclsyntax.Node, from inputTokens) (inputTokens, *node, inputTokens) {
|
|
before, leadComments, within, lineComments, newline, after := from.PartitionBlockItem(nativeItem.Range())
|
|
|
|
var item *node
|
|
|
|
switch tItem := nativeItem.(type) {
|
|
case *hclsyntax.Attribute:
|
|
item = parseAttribute(tItem, within, leadComments, lineComments, newline)
|
|
case *hclsyntax.Block:
|
|
item = parseBlock(tItem, within, leadComments, lineComments, newline)
|
|
default:
|
|
// should never happen if caller is behaving
|
|
panic("unsupported native item type")
|
|
}
|
|
|
|
return before, item, after
|
|
}
|
|
|
|
func parseAttribute(nativeAttr *hclsyntax.Attribute, from, leadComments, lineComments, newline inputTokens) *node {
|
|
attr := &Attribute{
|
|
inTree: newInTree(),
|
|
}
|
|
children := attr.inTree.children
|
|
|
|
{
|
|
cn := newNode(newComments(leadComments.Tokens()))
|
|
attr.leadComments = cn
|
|
children.AppendNode(cn)
|
|
}
|
|
|
|
before, nameTokens, from := from.Partition(nativeAttr.NameRange)
|
|
{
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
if nameTokens.Len() != 1 {
|
|
// Should never happen with valid input
|
|
panic("attribute name is not exactly one token")
|
|
}
|
|
token := nameTokens.Tokens()[0]
|
|
in := newNode(newIdentifier(token))
|
|
attr.name = in
|
|
children.AppendNode(in)
|
|
}
|
|
|
|
before, equalsTokens, from := from.Partition(nativeAttr.EqualsRange)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
children.AppendUnstructuredTokens(equalsTokens.Tokens())
|
|
|
|
before, exprTokens, from := from.Partition(nativeAttr.Expr.Range())
|
|
{
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
exprNode := parseExpression(nativeAttr.Expr, exprTokens)
|
|
attr.expr = exprNode
|
|
children.AppendNode(exprNode)
|
|
}
|
|
|
|
{
|
|
cn := newNode(newComments(lineComments.Tokens()))
|
|
attr.lineComments = cn
|
|
children.AppendNode(cn)
|
|
}
|
|
|
|
children.AppendUnstructuredTokens(newline.Tokens())
|
|
|
|
// Collect any stragglers, though there shouldn't be any
|
|
children.AppendUnstructuredTokens(from.Tokens())
|
|
|
|
return newNode(attr)
|
|
}
|
|
|
|
func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *node {
|
|
block := &Block{
|
|
inTree: newInTree(),
|
|
labels: newNodeSet(),
|
|
}
|
|
children := block.inTree.children
|
|
|
|
{
|
|
cn := newNode(newComments(leadComments.Tokens()))
|
|
block.leadComments = cn
|
|
children.AppendNode(cn)
|
|
}
|
|
|
|
before, typeTokens, from := from.Partition(nativeBlock.TypeRange)
|
|
{
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
if typeTokens.Len() != 1 {
|
|
// Should never happen with valid input
|
|
panic("block type name is not exactly one token")
|
|
}
|
|
token := typeTokens.Tokens()[0]
|
|
in := newNode(newIdentifier(token))
|
|
block.typeName = in
|
|
children.AppendNode(in)
|
|
}
|
|
|
|
for _, rng := range nativeBlock.LabelRanges {
|
|
var labelTokens inputTokens
|
|
before, labelTokens, from = from.Partition(rng)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
tokens := labelTokens.Tokens()
|
|
ln := newNode(newQuoted(tokens))
|
|
block.labels.Add(ln)
|
|
children.AppendNode(ln)
|
|
}
|
|
|
|
before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
children.AppendUnstructuredTokens(oBrace.Tokens())
|
|
|
|
// We go a bit out of order here: we go hunting for the closing brace
|
|
// so that we have a delimited body, but then we'll deal with the body
|
|
// before we actually append the closing brace and any straggling tokens
|
|
// that appear after it.
|
|
bodyTokens, cBrace, from := from.Partition(nativeBlock.CloseBraceRange)
|
|
before, body, after := parseBody(nativeBlock.Body, bodyTokens)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
block.body = body
|
|
children.AppendNode(body)
|
|
children.AppendUnstructuredTokens(after.Tokens())
|
|
|
|
children.AppendUnstructuredTokens(cBrace.Tokens())
|
|
|
|
// stragglers
|
|
children.AppendUnstructuredTokens(from.Tokens())
|
|
if lineComments.Len() > 0 {
|
|
// blocks don't actually have line comments, so we'll just treat
|
|
// them as extra stragglers
|
|
children.AppendUnstructuredTokens(lineComments.Tokens())
|
|
}
|
|
children.AppendUnstructuredTokens(newline.Tokens())
|
|
|
|
return newNode(block)
|
|
}
|
|
|
|
func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *node {
|
|
expr := newExpression()
|
|
children := expr.inTree.children
|
|
|
|
nativeVars := nativeExpr.Variables()
|
|
|
|
for _, nativeTraversal := range nativeVars {
|
|
before, traversal, after := parseTraversal(nativeTraversal, from)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
children.AppendNode(traversal)
|
|
expr.absTraversals.Add(traversal)
|
|
from = after
|
|
}
|
|
// Attach any stragglers that don't belong to a traversal to the expression
|
|
// itself. In an expression with no traversals at all, this is just the
|
|
// entirety of "from".
|
|
children.AppendUnstructuredTokens(from.Tokens())
|
|
|
|
return newNode(expr)
|
|
}
|
|
|
|
func parseTraversal(nativeTraversal hcl.Traversal, from inputTokens) (before inputTokens, n *node, after inputTokens) {
|
|
traversal := newTraversal()
|
|
children := traversal.inTree.children
|
|
before, from, after = from.Partition(nativeTraversal.SourceRange())
|
|
|
|
stepAfter := from
|
|
for _, nativeStep := range nativeTraversal {
|
|
before, step, after := parseTraversalStep(nativeStep, stepAfter)
|
|
children.AppendUnstructuredTokens(before.Tokens())
|
|
children.AppendNode(step)
|
|
stepAfter = after
|
|
}
|
|
|
|
return before, newNode(traversal), after
|
|
}
|
|
|
|
func parseTraversalStep(nativeStep hcl.Traverser, from inputTokens) (before inputTokens, n *node, after inputTokens) {
|
|
var children *nodes
|
|
switch tNativeStep := nativeStep.(type) {
|
|
|
|
case hcl.TraverseRoot, hcl.TraverseAttr:
|
|
step := newTraverseName()
|
|
children = step.inTree.children
|
|
before, from, after = from.Partition(nativeStep.SourceRange())
|
|
inBefore, token, inAfter := from.PartitionTypeSingle(hclsyntax.TokenIdent)
|
|
name := newIdentifier(token)
|
|
children.AppendUnstructuredTokens(inBefore.Tokens())
|
|
step.name = children.Append(name)
|
|
children.AppendUnstructuredTokens(inAfter.Tokens())
|
|
return before, newNode(step), after
|
|
|
|
case hcl.TraverseIndex:
|
|
step := newTraverseIndex()
|
|
children = step.inTree.children
|
|
before, from, after = from.Partition(nativeStep.SourceRange())
|
|
|
|
var inBefore, oBrack, keyTokens, cBrack inputTokens
|
|
inBefore, oBrack, from = from.PartitionType(hclsyntax.TokenOBrack)
|
|
children.AppendUnstructuredTokens(inBefore.Tokens())
|
|
children.AppendUnstructuredTokens(oBrack.Tokens())
|
|
keyTokens, cBrack, from = from.PartitionType(hclsyntax.TokenCBrack)
|
|
|
|
keyVal := tNativeStep.Key
|
|
switch keyVal.Type() {
|
|
case cty.String:
|
|
key := newQuoted(keyTokens.Tokens())
|
|
step.key = children.Append(key)
|
|
case cty.Number:
|
|
valBefore, valToken, valAfter := keyTokens.PartitionTypeSingle(hclsyntax.TokenNumberLit)
|
|
children.AppendUnstructuredTokens(valBefore.Tokens())
|
|
key := newNumber(valToken)
|
|
step.key = children.Append(key)
|
|
children.AppendUnstructuredTokens(valAfter.Tokens())
|
|
}
|
|
|
|
children.AppendUnstructuredTokens(cBrack.Tokens())
|
|
children.AppendUnstructuredTokens(from.Tokens())
|
|
|
|
return before, newNode(step), after
|
|
default:
|
|
panic(fmt.Sprintf("unsupported traversal step type %T", nativeStep))
|
|
}
|
|
|
|
}
|
|
|
|
// writerTokens takes a sequence of tokens as produced by the main hclsyntax
|
|
// package and transforms it into an equivalent sequence of tokens using
|
|
// this package's own token model.
|
|
//
|
|
// The resulting list contains the same number of tokens and uses the same
|
|
// indices as the input, allowing the two sets of tokens to be correlated
|
|
// by index.
|
|
func writerTokens(nativeTokens hclsyntax.Tokens) Tokens {
|
|
// Ultimately we want a slice of token _pointers_, but since we can
|
|
// predict how much memory we're going to devote to tokens we'll allocate
|
|
// it all as a single flat buffer and thus give the GC less work to do.
|
|
tokBuf := make([]Token, len(nativeTokens))
|
|
var lastByteOffset int
|
|
for i, mainToken := range nativeTokens {
|
|
// Create a copy of the bytes so that we can mutate without
|
|
// corrupting the original token stream.
|
|
bytes := make([]byte, len(mainToken.Bytes))
|
|
copy(bytes, mainToken.Bytes)
|
|
|
|
tokBuf[i] = Token{
|
|
Type: mainToken.Type,
|
|
Bytes: bytes,
|
|
|
|
// We assume here that spaces are always ASCII spaces, since
|
|
// that's what the scanner also assumes, and thus the number
|
|
// of bytes skipped is also the number of space characters.
|
|
SpacesBefore: mainToken.Range.Start.Byte - lastByteOffset,
|
|
}
|
|
|
|
lastByteOffset = mainToken.Range.End.Byte
|
|
}
|
|
|
|
// Now make a slice of pointers into the previous slice.
|
|
ret := make(Tokens, len(tokBuf))
|
|
for i := range ret {
|
|
ret[i] = &tokBuf[i]
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// partitionTokens takes a sequence of tokens and a hcl.Range and returns
|
|
// two indices within the token sequence that correspond with the range
|
|
// boundaries, such that the slice operator could be used to produce
|
|
// three token sequences for before, within, and after respectively:
|
|
//
|
|
// start, end := partitionTokens(toks, rng)
|
|
// before := toks[:start]
|
|
// within := toks[start:end]
|
|
// after := toks[end:]
|
|
//
|
|
// This works best when the range is aligned with token boundaries (e.g.
|
|
// because it was produced in terms of the scanner's result) but if that isn't
|
|
// true then it will make a best effort that may produce strange results at
|
|
// the boundaries.
|
|
//
|
|
// Native hclsyntax tokens are used here, because they contain the necessary
|
|
// absolute position information. However, since writerTokens produces a
|
|
// correlatable sequence of writer tokens, the resulting indices can be
|
|
// used also to index into its result, allowing the partitioning of writer
|
|
// tokens to be driven by the partitioning of native tokens.
|
|
//
|
|
// The tokens are assumed to be in source order and non-overlapping, which
|
|
// will be true if the token sequence from the scanner is used directly.
|
|
func partitionTokens(toks hclsyntax.Tokens, rng hcl.Range) (start, end int) {
|
|
// We us a linear search here because we assume tha in most cases our
|
|
// target range is close to the beginning of the sequence, and the seqences
|
|
// are generally small for most reasonable files anyway.
|
|
for i := 0; ; i++ {
|
|
if i >= len(toks) {
|
|
// No tokens for the given range at all!
|
|
return len(toks), len(toks)
|
|
}
|
|
|
|
if toks[i].Range.Start.Byte >= rng.Start.Byte {
|
|
start = i
|
|
break
|
|
}
|
|
}
|
|
|
|
for i := start; ; i++ {
|
|
if i >= len(toks) {
|
|
// The range "hangs off" the end of the token sequence
|
|
return start, len(toks)
|
|
}
|
|
|
|
if toks[i].Range.Start.Byte >= rng.End.Byte {
|
|
end = i // end marker is exclusive
|
|
break
|
|
}
|
|
}
|
|
|
|
return start, end
|
|
}
|
|
|
|
// partitionLeadCommentTokens takes a sequence of tokens that is assumed
|
|
// to immediately precede a construct that can have lead comment tokens,
|
|
// and returns the index into that sequence where the lead comments begin.
|
|
//
|
|
// Lead comments are defined as whole lines containing only comment tokens
|
|
// with no blank lines between. If no such lines are found, the returned
|
|
// index will be len(toks).
|
|
func partitionLeadCommentTokens(toks hclsyntax.Tokens) int {
|
|
// single-line comments (which is what we're interested in here)
|
|
// consume their trailing newline, so we can just walk backwards
|
|
// until we stop seeing comment tokens.
|
|
for i := len(toks) - 1; i >= 0; i-- {
|
|
if toks[i].Type != hclsyntax.TokenComment {
|
|
return i + 1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// partitionLineEndTokens takes a sequence of tokens that is assumed
|
|
// to immediately follow a construct that can have a line comment, and
|
|
// returns first the index where any line comments end and then second
|
|
// the index immediately after the trailing newline.
|
|
//
|
|
// Line comments are defined as comments that appear immediately after
|
|
// a construct on the same line where its significant tokens ended.
|
|
//
|
|
// Since single-line comment tokens (# and //) include the newline that
|
|
// terminates them, in the presence of these the two returned indices
|
|
// will be the same since the comment itself serves as the line end.
|
|
func partitionLineEndTokens(toks hclsyntax.Tokens) (afterComment, afterNewline int) {
|
|
for i := 0; i < len(toks); i++ {
|
|
tok := toks[i]
|
|
if tok.Type != hclsyntax.TokenComment {
|
|
switch tok.Type {
|
|
case hclsyntax.TokenNewline:
|
|
return i, i + 1
|
|
case hclsyntax.TokenEOF:
|
|
// Although this is valid, we mustn't include the EOF
|
|
// itself as our "newline" or else strange things will
|
|
// happen when we try to append new items.
|
|
return i, i
|
|
default:
|
|
// If we have well-formed input here then nothing else should be
|
|
// possible. This path should never happen, because we only try
|
|
// to extract tokens from the sequence if the parser succeeded,
|
|
// and it should catch this problem itself.
|
|
panic("malformed line trailers: expected only comments and newlines")
|
|
}
|
|
}
|
|
|
|
if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' {
|
|
// Newline at the end of a single-line comment serves both as
|
|
// the end of comments *and* the end of the line.
|
|
return i + 1, i + 1
|
|
}
|
|
}
|
|
return len(toks), len(toks)
|
|
}
|
|
|
|
// lexConfig uses the hclsyntax scanner to get a token stream and then
|
|
// rewrites it into this package's token model.
|
|
//
|
|
// Any errors produced during scanning are ignored, so the results of this
|
|
// function should be used with care.
|
|
func lexConfig(src []byte) Tokens {
|
|
mainTokens, _ := hclsyntax.LexConfig(src, "", hcl.Pos{Byte: 0, Line: 1, Column: 1})
|
|
return writerTokens(mainTokens)
|
|
}
|