63e2897c12
Some HCL callers make the (reasonable) assumption that the overall source range of an expression will be a superset of all of the ranges of its child expressions, for purposes such as extraction of source code snippets, parse tree annotation in hclwrite, text editor analysis functions like "go to reference", etc. The IndexExpr type was not previously honoring that assumption, since its source range was placed around only the bracket portion. That is a good region to use when reporting errors relating to the index operation, but it is not a faithful representation of the full extent of the expression. In order to meet both of these requirements at once, IndexExpr now has both SrcRange covering the entire expression and BracketRange covering the index part delimited by brackets. We can then use BracketRange in our error messages but return SrcRange as the result of the general Range method that is common to all expression types.
2056 lines
58 KiB
Go
2056 lines
58 KiB
Go
package hclsyntax
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"strconv"
|
|
"unicode/utf8"
|
|
|
|
"github.com/apparentlymart/go-textseg/textseg"
|
|
"github.com/hashicorp/hcl/v2"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
type parser struct {
|
|
*peeker
|
|
|
|
// set to true if any recovery is attempted. The parser can use this
|
|
// to attempt to reduce error noise by suppressing "bad token" errors
|
|
// in recovery mode, assuming that the recovery heuristics have failed
|
|
// in this case and left the peeker in a wrong place.
|
|
recovery bool
|
|
}
|
|
|
|
func (p *parser) ParseBody(end TokenType) (*Body, hcl.Diagnostics) {
|
|
attrs := Attributes{}
|
|
blocks := Blocks{}
|
|
var diags hcl.Diagnostics
|
|
|
|
startRange := p.PrevRange()
|
|
var endRange hcl.Range
|
|
|
|
Token:
|
|
for {
|
|
next := p.Peek()
|
|
if next.Type == end {
|
|
endRange = p.NextRange()
|
|
p.Read()
|
|
break Token
|
|
}
|
|
|
|
switch next.Type {
|
|
case TokenNewline:
|
|
p.Read()
|
|
continue
|
|
case TokenIdent:
|
|
item, itemDiags := p.ParseBodyItem()
|
|
diags = append(diags, itemDiags...)
|
|
switch titem := item.(type) {
|
|
case *Block:
|
|
blocks = append(blocks, titem)
|
|
case *Attribute:
|
|
if existing, exists := attrs[titem.Name]; exists {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Attribute redefined",
|
|
Detail: fmt.Sprintf(
|
|
"The argument %q was already set at %s. Each argument may be set only once.",
|
|
titem.Name, existing.NameRange.String(),
|
|
),
|
|
Subject: &titem.NameRange,
|
|
})
|
|
} else {
|
|
attrs[titem.Name] = titem
|
|
}
|
|
default:
|
|
// This should never happen for valid input, but may if a
|
|
// syntax error was detected in ParseBodyItem that prevented
|
|
// it from even producing a partially-broken item. In that
|
|
// case, it would've left at least one error in the diagnostics
|
|
// slice we already dealt with above.
|
|
//
|
|
// We'll assume ParseBodyItem attempted recovery to leave
|
|
// us in a reasonable position to try parsing the next item.
|
|
continue
|
|
}
|
|
default:
|
|
bad := p.Read()
|
|
if !p.recovery {
|
|
if bad.Type == TokenOQuote {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid argument name",
|
|
Detail: "Argument names must not be quoted.",
|
|
Subject: &bad.Range,
|
|
})
|
|
} else {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument or block definition required",
|
|
Detail: "An argument or block definition is required here.",
|
|
Subject: &bad.Range,
|
|
})
|
|
}
|
|
}
|
|
endRange = p.PrevRange() // arbitrary, but somewhere inside the body means better diagnostics
|
|
|
|
p.recover(end) // attempt to recover to the token after the end of this body
|
|
break Token
|
|
}
|
|
}
|
|
|
|
return &Body{
|
|
Attributes: attrs,
|
|
Blocks: blocks,
|
|
|
|
SrcRange: hcl.RangeBetween(startRange, endRange),
|
|
EndRange: hcl.Range{
|
|
Filename: endRange.Filename,
|
|
Start: endRange.End,
|
|
End: endRange.End,
|
|
},
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) ParseBodyItem() (Node, hcl.Diagnostics) {
|
|
ident := p.Read()
|
|
if ident.Type != TokenIdent {
|
|
p.recoverAfterBodyItem()
|
|
return nil, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument or block definition required",
|
|
Detail: "An argument or block definition is required here.",
|
|
Subject: &ident.Range,
|
|
},
|
|
}
|
|
}
|
|
|
|
next := p.Peek()
|
|
|
|
switch next.Type {
|
|
case TokenEqual:
|
|
return p.finishParsingBodyAttribute(ident, false)
|
|
case TokenOQuote, TokenOBrace, TokenIdent:
|
|
return p.finishParsingBodyBlock(ident)
|
|
default:
|
|
p.recoverAfterBodyItem()
|
|
return nil, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument or block definition required",
|
|
Detail: "An argument or block definition is required here. To set an argument, use the equals sign \"=\" to introduce the argument value.",
|
|
Subject: &ident.Range,
|
|
},
|
|
}
|
|
}
|
|
|
|
return nil, nil
|
|
}
|
|
|
|
// parseSingleAttrBody is a weird variant of ParseBody that deals with the
|
|
// body of a nested block containing only one attribute value all on a single
|
|
// line, like foo { bar = baz } . It expects to find a single attribute item
|
|
// immediately followed by the end token type with no intervening newlines.
|
|
func (p *parser) parseSingleAttrBody(end TokenType) (*Body, hcl.Diagnostics) {
|
|
ident := p.Read()
|
|
if ident.Type != TokenIdent {
|
|
p.recoverAfterBodyItem()
|
|
return nil, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument or block definition required",
|
|
Detail: "An argument or block definition is required here.",
|
|
Subject: &ident.Range,
|
|
},
|
|
}
|
|
}
|
|
|
|
var attr *Attribute
|
|
var diags hcl.Diagnostics
|
|
|
|
next := p.Peek()
|
|
|
|
switch next.Type {
|
|
case TokenEqual:
|
|
node, attrDiags := p.finishParsingBodyAttribute(ident, true)
|
|
diags = append(diags, attrDiags...)
|
|
attr = node.(*Attribute)
|
|
case TokenOQuote, TokenOBrace, TokenIdent:
|
|
p.recoverAfterBodyItem()
|
|
return nil, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument definition required",
|
|
Detail: fmt.Sprintf("A single-line block definition can contain only a single argument. If you meant to define argument %q, use an equals sign to assign it a value. To define a nested block, place it on a line of its own within its parent block.", ident.Bytes),
|
|
Subject: hcl.RangeBetween(ident.Range, next.Range).Ptr(),
|
|
},
|
|
}
|
|
default:
|
|
p.recoverAfterBodyItem()
|
|
return nil, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Argument or block definition required",
|
|
Detail: "An argument or block definition is required here. To set an argument, use the equals sign \"=\" to introduce the argument value.",
|
|
Subject: &ident.Range,
|
|
},
|
|
}
|
|
}
|
|
|
|
return &Body{
|
|
Attributes: Attributes{
|
|
string(ident.Bytes): attr,
|
|
},
|
|
|
|
SrcRange: attr.SrcRange,
|
|
EndRange: hcl.Range{
|
|
Filename: attr.SrcRange.Filename,
|
|
Start: attr.SrcRange.End,
|
|
End: attr.SrcRange.End,
|
|
},
|
|
}, diags
|
|
|
|
}
|
|
|
|
func (p *parser) finishParsingBodyAttribute(ident Token, singleLine bool) (Node, hcl.Diagnostics) {
|
|
eqTok := p.Read() // eat equals token
|
|
if eqTok.Type != TokenEqual {
|
|
// should never happen if caller behaves
|
|
panic("finishParsingBodyAttribute called with next not equals")
|
|
}
|
|
|
|
var endRange hcl.Range
|
|
|
|
expr, diags := p.ParseExpression()
|
|
if p.recovery && diags.HasErrors() {
|
|
// recovery within expressions tends to be tricky, so we've probably
|
|
// landed somewhere weird. We'll try to reset to the start of a body
|
|
// item so parsing can continue.
|
|
endRange = p.PrevRange()
|
|
p.recoverAfterBodyItem()
|
|
} else {
|
|
endRange = p.PrevRange()
|
|
if !singleLine {
|
|
end := p.Peek()
|
|
if end.Type != TokenNewline && end.Type != TokenEOF {
|
|
if !p.recovery {
|
|
summary := "Missing newline after argument"
|
|
detail := "An argument definition must end with a newline."
|
|
|
|
if end.Type == TokenComma {
|
|
summary = "Unexpected comma after argument"
|
|
detail = "Argument definitions must be separated by newlines, not commas. " + detail
|
|
}
|
|
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: summary,
|
|
Detail: detail,
|
|
Subject: &end.Range,
|
|
Context: hcl.RangeBetween(ident.Range, end.Range).Ptr(),
|
|
})
|
|
}
|
|
endRange = p.PrevRange()
|
|
p.recoverAfterBodyItem()
|
|
} else {
|
|
endRange = p.PrevRange()
|
|
p.Read() // eat newline
|
|
}
|
|
}
|
|
}
|
|
|
|
return &Attribute{
|
|
Name: string(ident.Bytes),
|
|
Expr: expr,
|
|
|
|
SrcRange: hcl.RangeBetween(ident.Range, endRange),
|
|
NameRange: ident.Range,
|
|
EqualsRange: eqTok.Range,
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) finishParsingBodyBlock(ident Token) (Node, hcl.Diagnostics) {
|
|
var blockType = string(ident.Bytes)
|
|
var diags hcl.Diagnostics
|
|
var labels []string
|
|
var labelRanges []hcl.Range
|
|
|
|
var oBrace Token
|
|
|
|
Token:
|
|
for {
|
|
tok := p.Peek()
|
|
|
|
switch tok.Type {
|
|
|
|
case TokenOBrace:
|
|
oBrace = p.Read()
|
|
break Token
|
|
|
|
case TokenOQuote:
|
|
label, labelRange, labelDiags := p.parseQuotedStringLiteral()
|
|
diags = append(diags, labelDiags...)
|
|
labels = append(labels, label)
|
|
labelRanges = append(labelRanges, labelRange)
|
|
// parseQuoteStringLiteral recovers up to the closing quote
|
|
// if it encounters problems, so we can continue looking for
|
|
// more labels and eventually the block body even.
|
|
|
|
case TokenIdent:
|
|
tok = p.Read() // eat token
|
|
label, labelRange := string(tok.Bytes), tok.Range
|
|
labels = append(labels, label)
|
|
labelRanges = append(labelRanges, labelRange)
|
|
|
|
default:
|
|
switch tok.Type {
|
|
case TokenEqual:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid block definition",
|
|
Detail: "The equals sign \"=\" indicates an argument definition, and must not be used when defining a block.",
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
|
|
})
|
|
case TokenNewline:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid block definition",
|
|
Detail: "A block definition must have block content delimited by \"{\" and \"}\", starting on the same line as the block header.",
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
|
|
})
|
|
default:
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid block definition",
|
|
Detail: "Either a quoted string block label or an opening brace (\"{\") is expected here.",
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
|
|
})
|
|
}
|
|
}
|
|
|
|
p.recoverAfterBodyItem()
|
|
|
|
return &Block{
|
|
Type: blockType,
|
|
Labels: labels,
|
|
Body: &Body{
|
|
SrcRange: ident.Range,
|
|
EndRange: ident.Range,
|
|
},
|
|
|
|
TypeRange: ident.Range,
|
|
LabelRanges: labelRanges,
|
|
OpenBraceRange: ident.Range, // placeholder
|
|
CloseBraceRange: ident.Range, // placeholder
|
|
}, diags
|
|
}
|
|
}
|
|
|
|
// Once we fall out here, the peeker is pointed just after our opening
|
|
// brace, so we can begin our nested body parsing.
|
|
var body *Body
|
|
var bodyDiags hcl.Diagnostics
|
|
switch p.Peek().Type {
|
|
case TokenNewline, TokenEOF, TokenCBrace:
|
|
body, bodyDiags = p.ParseBody(TokenCBrace)
|
|
default:
|
|
// Special one-line, single-attribute block parsing mode.
|
|
body, bodyDiags = p.parseSingleAttrBody(TokenCBrace)
|
|
switch p.Peek().Type {
|
|
case TokenCBrace:
|
|
p.Read() // the happy path - just consume the closing brace
|
|
case TokenComma:
|
|
// User seems to be trying to use the object-constructor
|
|
// comma-separated style, which isn't permitted for blocks.
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid single-argument block definition",
|
|
Detail: "Single-line block syntax can include only one argument definition. To define multiple arguments, use the multi-line block syntax with one argument definition per line.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
})
|
|
p.recover(TokenCBrace)
|
|
case TokenNewline:
|
|
// We don't allow weird mixtures of single and multi-line syntax.
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid single-argument block definition",
|
|
Detail: "An argument definition on the same line as its containing block creates a single-line block definition, which must also be closed on the same line. Place the block's closing brace immediately after the argument definition.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
})
|
|
p.recover(TokenCBrace)
|
|
default:
|
|
// Some other weird thing is going on. Since we can't guess a likely
|
|
// user intent for this one, we'll skip it if we're already in
|
|
// recovery mode.
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid single-argument block definition",
|
|
Detail: "A single-line block definition must end with a closing brace immediately after its single argument definition.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
})
|
|
}
|
|
p.recover(TokenCBrace)
|
|
}
|
|
}
|
|
diags = append(diags, bodyDiags...)
|
|
cBraceRange := p.PrevRange()
|
|
|
|
eol := p.Peek()
|
|
if eol.Type == TokenNewline || eol.Type == TokenEOF {
|
|
p.Read() // eat newline
|
|
} else {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing newline after block definition",
|
|
Detail: "A block definition must end with a newline.",
|
|
Subject: &eol.Range,
|
|
Context: hcl.RangeBetween(ident.Range, eol.Range).Ptr(),
|
|
})
|
|
}
|
|
p.recoverAfterBodyItem()
|
|
}
|
|
|
|
// We must never produce a nil body, since the caller may attempt to
|
|
// do analysis of a partial result when there's an error, so we'll
|
|
// insert a placeholder if we otherwise failed to produce a valid
|
|
// body due to one of the syntax error paths above.
|
|
if body == nil && diags.HasErrors() {
|
|
body = &Body{
|
|
SrcRange: hcl.RangeBetween(oBrace.Range, cBraceRange),
|
|
EndRange: cBraceRange,
|
|
}
|
|
}
|
|
|
|
return &Block{
|
|
Type: blockType,
|
|
Labels: labels,
|
|
Body: body,
|
|
|
|
TypeRange: ident.Range,
|
|
LabelRanges: labelRanges,
|
|
OpenBraceRange: oBrace.Range,
|
|
CloseBraceRange: cBraceRange,
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) ParseExpression() (Expression, hcl.Diagnostics) {
|
|
return p.parseTernaryConditional()
|
|
}
|
|
|
|
func (p *parser) parseTernaryConditional() (Expression, hcl.Diagnostics) {
|
|
// The ternary conditional operator (.. ? .. : ..) behaves somewhat
|
|
// like a binary operator except that the "symbol" is itself
|
|
// an expression enclosed in two punctuation characters.
|
|
// The middle expression is parsed as if the ? and : symbols
|
|
// were parentheses. The "rhs" (the "false expression") is then
|
|
// treated right-associatively so it behaves similarly to the
|
|
// middle in terms of precedence.
|
|
|
|
startRange := p.NextRange()
|
|
var condExpr, trueExpr, falseExpr Expression
|
|
var diags hcl.Diagnostics
|
|
|
|
condExpr, condDiags := p.parseBinaryOps(binaryOps)
|
|
diags = append(diags, condDiags...)
|
|
if p.recovery && condDiags.HasErrors() {
|
|
return condExpr, diags
|
|
}
|
|
|
|
questionMark := p.Peek()
|
|
if questionMark.Type != TokenQuestion {
|
|
return condExpr, diags
|
|
}
|
|
|
|
p.Read() // eat question mark
|
|
|
|
trueExpr, trueDiags := p.ParseExpression()
|
|
diags = append(diags, trueDiags...)
|
|
if p.recovery && trueDiags.HasErrors() {
|
|
return condExpr, diags
|
|
}
|
|
|
|
colon := p.Peek()
|
|
if colon.Type != TokenColon {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing false expression in conditional",
|
|
Detail: "The conditional operator (...?...:...) requires a false expression, delimited by a colon.",
|
|
Subject: &colon.Range,
|
|
Context: hcl.RangeBetween(startRange, colon.Range).Ptr(),
|
|
})
|
|
return condExpr, diags
|
|
}
|
|
|
|
p.Read() // eat colon
|
|
|
|
falseExpr, falseDiags := p.ParseExpression()
|
|
diags = append(diags, falseDiags...)
|
|
if p.recovery && falseDiags.HasErrors() {
|
|
return condExpr, diags
|
|
}
|
|
|
|
return &ConditionalExpr{
|
|
Condition: condExpr,
|
|
TrueResult: trueExpr,
|
|
FalseResult: falseExpr,
|
|
|
|
SrcRange: hcl.RangeBetween(startRange, falseExpr.Range()),
|
|
}, diags
|
|
}
|
|
|
|
// parseBinaryOps calls itself recursively to work through all of the
|
|
// operator precedence groups, and then eventually calls parseExpressionTerm
|
|
// for each operand.
|
|
func (p *parser) parseBinaryOps(ops []map[TokenType]*Operation) (Expression, hcl.Diagnostics) {
|
|
if len(ops) == 0 {
|
|
// We've run out of operators, so now we'll just try to parse a term.
|
|
return p.parseExpressionWithTraversals()
|
|
}
|
|
|
|
thisLevel := ops[0]
|
|
remaining := ops[1:]
|
|
|
|
var lhs, rhs Expression
|
|
var operation *Operation
|
|
var diags hcl.Diagnostics
|
|
|
|
// Parse a term that might be the first operand of a binary
|
|
// operation or it might just be a standalone term.
|
|
// We won't know until we've parsed it and can look ahead
|
|
// to see if there's an operator token for this level.
|
|
lhs, lhsDiags := p.parseBinaryOps(remaining)
|
|
diags = append(diags, lhsDiags...)
|
|
if p.recovery && lhsDiags.HasErrors() {
|
|
return lhs, diags
|
|
}
|
|
|
|
// We'll keep eating up operators until we run out, so that operators
|
|
// with the same precedence will combine in a left-associative manner:
|
|
// a+b+c => (a+b)+c, not a+(b+c)
|
|
//
|
|
// Should we later want to have right-associative operators, a way
|
|
// to achieve that would be to call back up to ParseExpression here
|
|
// instead of iteratively parsing only the remaining operators.
|
|
for {
|
|
next := p.Peek()
|
|
var newOp *Operation
|
|
var ok bool
|
|
if newOp, ok = thisLevel[next.Type]; !ok {
|
|
break
|
|
}
|
|
|
|
// Are we extending an expression started on the previous iteration?
|
|
if operation != nil {
|
|
lhs = &BinaryOpExpr{
|
|
LHS: lhs,
|
|
Op: operation,
|
|
RHS: rhs,
|
|
|
|
SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()),
|
|
}
|
|
}
|
|
|
|
operation = newOp
|
|
p.Read() // eat operator token
|
|
var rhsDiags hcl.Diagnostics
|
|
rhs, rhsDiags = p.parseBinaryOps(remaining)
|
|
diags = append(diags, rhsDiags...)
|
|
if p.recovery && rhsDiags.HasErrors() {
|
|
return lhs, diags
|
|
}
|
|
}
|
|
|
|
if operation == nil {
|
|
return lhs, diags
|
|
}
|
|
|
|
return &BinaryOpExpr{
|
|
LHS: lhs,
|
|
Op: operation,
|
|
RHS: rhs,
|
|
|
|
SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()),
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) parseExpressionWithTraversals() (Expression, hcl.Diagnostics) {
|
|
term, diags := p.parseExpressionTerm()
|
|
ret, moreDiags := p.parseExpressionTraversals(term)
|
|
diags = append(diags, moreDiags...)
|
|
return ret, diags
|
|
}
|
|
|
|
func (p *parser) parseExpressionTraversals(from Expression) (Expression, hcl.Diagnostics) {
|
|
var diags hcl.Diagnostics
|
|
ret := from
|
|
|
|
Traversal:
|
|
for {
|
|
next := p.Peek()
|
|
|
|
switch next.Type {
|
|
case TokenDot:
|
|
// Attribute access or splat
|
|
dot := p.Read()
|
|
attrTok := p.Peek()
|
|
|
|
switch attrTok.Type {
|
|
case TokenIdent:
|
|
attrTok = p.Read() // eat token
|
|
name := string(attrTok.Bytes)
|
|
rng := hcl.RangeBetween(dot.Range, attrTok.Range)
|
|
step := hcl.TraverseAttr{
|
|
Name: name,
|
|
SrcRange: rng,
|
|
}
|
|
|
|
ret = makeRelativeTraversal(ret, step, rng)
|
|
|
|
case TokenNumberLit:
|
|
// This is a weird form we inherited from HIL, allowing numbers
|
|
// to be used as attributes as a weird way of writing [n].
|
|
// This was never actually a first-class thing in HIL, but
|
|
// HIL tolerated sequences like .0. in its variable names and
|
|
// calling applications like Terraform exploited that to
|
|
// introduce indexing syntax where none existed.
|
|
numTok := p.Read() // eat token
|
|
attrTok = numTok
|
|
|
|
// This syntax is ambiguous if multiple indices are used in
|
|
// succession, like foo.0.1.baz: that actually parses as
|
|
// a fractional number 0.1. Since we're only supporting this
|
|
// syntax for compatibility with legacy Terraform
|
|
// configurations, and Terraform does not tend to have lists
|
|
// of lists, we'll choose to reject that here with a helpful
|
|
// error message, rather than failing later because the index
|
|
// isn't a whole number.
|
|
if dotIdx := bytes.IndexByte(numTok.Bytes, '.'); dotIdx >= 0 {
|
|
first := numTok.Bytes[:dotIdx]
|
|
second := numTok.Bytes[dotIdx+1:]
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid legacy index syntax",
|
|
Detail: fmt.Sprintf("When using the legacy index syntax, chaining two indexes together is not permitted. Use the proper index syntax instead, like [%s][%s].", first, second),
|
|
Subject: &attrTok.Range,
|
|
})
|
|
rng := hcl.RangeBetween(dot.Range, numTok.Range)
|
|
step := hcl.TraverseIndex{
|
|
Key: cty.DynamicVal,
|
|
SrcRange: rng,
|
|
}
|
|
ret = makeRelativeTraversal(ret, step, rng)
|
|
break
|
|
}
|
|
|
|
numVal, numDiags := p.numberLitValue(numTok)
|
|
diags = append(diags, numDiags...)
|
|
|
|
rng := hcl.RangeBetween(dot.Range, numTok.Range)
|
|
step := hcl.TraverseIndex{
|
|
Key: numVal,
|
|
SrcRange: rng,
|
|
}
|
|
|
|
ret = makeRelativeTraversal(ret, step, rng)
|
|
|
|
case TokenStar:
|
|
// "Attribute-only" splat expression.
|
|
// (This is a kinda weird construct inherited from HIL, which
|
|
// behaves a bit like a [*] splat except that it is only able
|
|
// to do attribute traversals into each of its elements,
|
|
// whereas foo[*] can support _any_ traversal.
|
|
marker := p.Read() // eat star
|
|
trav := make(hcl.Traversal, 0, 1)
|
|
var firstRange, lastRange hcl.Range
|
|
firstRange = p.NextRange()
|
|
for p.Peek().Type == TokenDot {
|
|
dot := p.Read()
|
|
|
|
if p.Peek().Type == TokenNumberLit {
|
|
// Continuing the "weird stuff inherited from HIL"
|
|
// theme, we also allow numbers as attribute names
|
|
// inside splats and interpret them as indexing
|
|
// into a list, for expressions like:
|
|
// foo.bar.*.baz.0.foo
|
|
numTok := p.Read()
|
|
|
|
// Weird special case if the user writes something
|
|
// like foo.bar.*.baz.0.0.foo, where 0.0 parses
|
|
// as a number.
|
|
if dotIdx := bytes.IndexByte(numTok.Bytes, '.'); dotIdx >= 0 {
|
|
first := numTok.Bytes[:dotIdx]
|
|
second := numTok.Bytes[dotIdx+1:]
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid legacy index syntax",
|
|
Detail: fmt.Sprintf("When using the legacy index syntax, chaining two indexes together is not permitted. Use the proper index syntax with a full splat expression [*] instead, like [%s][%s].", first, second),
|
|
Subject: &attrTok.Range,
|
|
})
|
|
trav = append(trav, hcl.TraverseIndex{
|
|
Key: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(dot.Range, numTok.Range),
|
|
})
|
|
lastRange = numTok.Range
|
|
continue
|
|
}
|
|
|
|
numVal, numDiags := p.numberLitValue(numTok)
|
|
diags = append(diags, numDiags...)
|
|
trav = append(trav, hcl.TraverseIndex{
|
|
Key: numVal,
|
|
SrcRange: hcl.RangeBetween(dot.Range, numTok.Range),
|
|
})
|
|
lastRange = numTok.Range
|
|
continue
|
|
}
|
|
|
|
if p.Peek().Type != TokenIdent {
|
|
if !p.recovery {
|
|
if p.Peek().Type == TokenStar {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Nested splat expression not allowed",
|
|
Detail: "A splat expression (*) cannot be used inside another attribute-only splat expression.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
})
|
|
} else {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid attribute name",
|
|
Detail: "An attribute name is required after a dot.",
|
|
Subject: &attrTok.Range,
|
|
})
|
|
}
|
|
}
|
|
p.setRecovery()
|
|
continue Traversal
|
|
}
|
|
|
|
attrTok := p.Read()
|
|
trav = append(trav, hcl.TraverseAttr{
|
|
Name: string(attrTok.Bytes),
|
|
SrcRange: hcl.RangeBetween(dot.Range, attrTok.Range),
|
|
})
|
|
lastRange = attrTok.Range
|
|
}
|
|
|
|
itemExpr := &AnonSymbolExpr{
|
|
SrcRange: hcl.RangeBetween(dot.Range, marker.Range),
|
|
}
|
|
var travExpr Expression
|
|
if len(trav) == 0 {
|
|
travExpr = itemExpr
|
|
} else {
|
|
travExpr = &RelativeTraversalExpr{
|
|
Source: itemExpr,
|
|
Traversal: trav,
|
|
SrcRange: hcl.RangeBetween(firstRange, lastRange),
|
|
}
|
|
}
|
|
|
|
ret = &SplatExpr{
|
|
Source: ret,
|
|
Each: travExpr,
|
|
Item: itemExpr,
|
|
|
|
SrcRange: hcl.RangeBetween(from.Range(), lastRange),
|
|
MarkerRange: hcl.RangeBetween(dot.Range, marker.Range),
|
|
}
|
|
|
|
default:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid attribute name",
|
|
Detail: "An attribute name is required after a dot.",
|
|
Subject: &attrTok.Range,
|
|
})
|
|
// This leaves the peeker in a bad place, so following items
|
|
// will probably be misparsed until we hit something that
|
|
// allows us to re-sync.
|
|
//
|
|
// We will probably need to do something better here eventually
|
|
// in order to support autocomplete triggered by typing a
|
|
// period.
|
|
p.setRecovery()
|
|
}
|
|
|
|
case TokenOBrack:
|
|
// Indexing of a collection.
|
|
// This may or may not be a hcl.Traverser, depending on whether
|
|
// the key value is something constant.
|
|
|
|
open := p.Read()
|
|
switch p.Peek().Type {
|
|
case TokenStar:
|
|
// This is a full splat expression, like foo[*], which consumes
|
|
// the rest of the traversal steps after it using a recursive
|
|
// call to this function.
|
|
p.Read() // consume star
|
|
close := p.Read()
|
|
if close.Type != TokenCBrack && !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing close bracket on splat index",
|
|
Detail: "The star for a full splat operator must be immediately followed by a closing bracket (\"]\").",
|
|
Subject: &close.Range,
|
|
})
|
|
close = p.recover(TokenCBrack)
|
|
}
|
|
// Splat expressions use a special "anonymous symbol" as a
|
|
// placeholder in an expression to be evaluated once for each
|
|
// item in the source expression.
|
|
itemExpr := &AnonSymbolExpr{
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}
|
|
// Now we'll recursively call this same function to eat any
|
|
// remaining traversal steps against the anonymous symbol.
|
|
travExpr, nestedDiags := p.parseExpressionTraversals(itemExpr)
|
|
diags = append(diags, nestedDiags...)
|
|
|
|
ret = &SplatExpr{
|
|
Source: ret,
|
|
Each: travExpr,
|
|
Item: itemExpr,
|
|
|
|
SrcRange: hcl.RangeBetween(from.Range(), travExpr.Range()),
|
|
MarkerRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}
|
|
|
|
default:
|
|
|
|
var close Token
|
|
p.PushIncludeNewlines(false) // arbitrary newlines allowed in brackets
|
|
keyExpr, keyDiags := p.ParseExpression()
|
|
diags = append(diags, keyDiags...)
|
|
if p.recovery && keyDiags.HasErrors() {
|
|
close = p.recover(TokenCBrack)
|
|
} else {
|
|
close = p.Read()
|
|
if close.Type != TokenCBrack && !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing close bracket on index",
|
|
Detail: "The index operator must end with a closing bracket (\"]\").",
|
|
Subject: &close.Range,
|
|
})
|
|
close = p.recover(TokenCBrack)
|
|
}
|
|
}
|
|
p.PopIncludeNewlines()
|
|
|
|
if lit, isLit := keyExpr.(*LiteralValueExpr); isLit {
|
|
litKey, _ := lit.Value(nil)
|
|
rng := hcl.RangeBetween(open.Range, close.Range)
|
|
step := hcl.TraverseIndex{
|
|
Key: litKey,
|
|
SrcRange: rng,
|
|
}
|
|
ret = makeRelativeTraversal(ret, step, rng)
|
|
} else if tmpl, isTmpl := keyExpr.(*TemplateExpr); isTmpl && tmpl.IsStringLiteral() {
|
|
litKey, _ := tmpl.Value(nil)
|
|
rng := hcl.RangeBetween(open.Range, close.Range)
|
|
step := hcl.TraverseIndex{
|
|
Key: litKey,
|
|
SrcRange: rng,
|
|
}
|
|
ret = makeRelativeTraversal(ret, step, rng)
|
|
} else {
|
|
rng := hcl.RangeBetween(open.Range, close.Range)
|
|
ret = &IndexExpr{
|
|
Collection: ret,
|
|
Key: keyExpr,
|
|
|
|
SrcRange: hcl.RangeBetween(from.Range(), rng),
|
|
OpenRange: open.Range,
|
|
BracketRange: rng,
|
|
}
|
|
}
|
|
}
|
|
|
|
default:
|
|
break Traversal
|
|
}
|
|
}
|
|
|
|
return ret, diags
|
|
}
|
|
|
|
// makeRelativeTraversal takes an expression and a traverser and returns
|
|
// a traversal expression that combines the two. If the given expression
|
|
// is already a traversal, it is extended in place (mutating it) and
|
|
// returned. If it isn't, a new RelativeTraversalExpr is created and returned.
|
|
func makeRelativeTraversal(expr Expression, next hcl.Traverser, rng hcl.Range) Expression {
|
|
switch texpr := expr.(type) {
|
|
case *ScopeTraversalExpr:
|
|
texpr.Traversal = append(texpr.Traversal, next)
|
|
texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng)
|
|
return texpr
|
|
case *RelativeTraversalExpr:
|
|
texpr.Traversal = append(texpr.Traversal, next)
|
|
texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng)
|
|
return texpr
|
|
default:
|
|
return &RelativeTraversalExpr{
|
|
Source: expr,
|
|
Traversal: hcl.Traversal{next},
|
|
SrcRange: hcl.RangeBetween(expr.Range(), rng),
|
|
}
|
|
}
|
|
}
|
|
|
|
func (p *parser) parseExpressionTerm() (Expression, hcl.Diagnostics) {
|
|
start := p.Peek()
|
|
|
|
switch start.Type {
|
|
case TokenOParen:
|
|
p.Read() // eat open paren
|
|
|
|
p.PushIncludeNewlines(false)
|
|
|
|
expr, diags := p.ParseExpression()
|
|
if diags.HasErrors() {
|
|
// attempt to place the peeker after our closing paren
|
|
// before we return, so that the next parser has some
|
|
// chance of finding a valid expression.
|
|
p.recover(TokenCParen)
|
|
p.PopIncludeNewlines()
|
|
return expr, diags
|
|
}
|
|
|
|
close := p.Peek()
|
|
if close.Type != TokenCParen {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Unbalanced parentheses",
|
|
Detail: "Expected a closing parenthesis to terminate the expression.",
|
|
Subject: &close.Range,
|
|
Context: hcl.RangeBetween(start.Range, close.Range).Ptr(),
|
|
})
|
|
p.setRecovery()
|
|
}
|
|
|
|
p.Read() // eat closing paren
|
|
p.PopIncludeNewlines()
|
|
|
|
return expr, diags
|
|
|
|
case TokenNumberLit:
|
|
tok := p.Read() // eat number token
|
|
|
|
numVal, diags := p.numberLitValue(tok)
|
|
return &LiteralValueExpr{
|
|
Val: numVal,
|
|
SrcRange: tok.Range,
|
|
}, diags
|
|
|
|
case TokenIdent:
|
|
tok := p.Read() // eat identifier token
|
|
|
|
if p.Peek().Type == TokenOParen {
|
|
return p.finishParsingFunctionCall(tok)
|
|
}
|
|
|
|
name := string(tok.Bytes)
|
|
switch name {
|
|
case "true":
|
|
return &LiteralValueExpr{
|
|
Val: cty.True,
|
|
SrcRange: tok.Range,
|
|
}, nil
|
|
case "false":
|
|
return &LiteralValueExpr{
|
|
Val: cty.False,
|
|
SrcRange: tok.Range,
|
|
}, nil
|
|
case "null":
|
|
return &LiteralValueExpr{
|
|
Val: cty.NullVal(cty.DynamicPseudoType),
|
|
SrcRange: tok.Range,
|
|
}, nil
|
|
default:
|
|
return &ScopeTraversalExpr{
|
|
Traversal: hcl.Traversal{
|
|
hcl.TraverseRoot{
|
|
Name: name,
|
|
SrcRange: tok.Range,
|
|
},
|
|
},
|
|
SrcRange: tok.Range,
|
|
}, nil
|
|
}
|
|
|
|
case TokenOQuote, TokenOHeredoc:
|
|
open := p.Read() // eat opening marker
|
|
closer := p.oppositeBracket(open.Type)
|
|
exprs, passthru, _, diags := p.parseTemplateInner(closer, tokenOpensFlushHeredoc(open))
|
|
|
|
closeRange := p.PrevRange()
|
|
|
|
if passthru {
|
|
if len(exprs) != 1 {
|
|
panic("passthru set with len(exprs) != 1")
|
|
}
|
|
return &TemplateWrapExpr{
|
|
Wrapped: exprs[0],
|
|
SrcRange: hcl.RangeBetween(open.Range, closeRange),
|
|
}, diags
|
|
}
|
|
|
|
return &TemplateExpr{
|
|
Parts: exprs,
|
|
SrcRange: hcl.RangeBetween(open.Range, closeRange),
|
|
}, diags
|
|
|
|
case TokenMinus:
|
|
tok := p.Read() // eat minus token
|
|
|
|
// Important to use parseExpressionWithTraversals rather than parseExpression
|
|
// here, otherwise we can capture a following binary expression into
|
|
// our negation.
|
|
// e.g. -46+5 should parse as (-46)+5, not -(46+5)
|
|
operand, diags := p.parseExpressionWithTraversals()
|
|
return &UnaryOpExpr{
|
|
Op: OpNegate,
|
|
Val: operand,
|
|
|
|
SrcRange: hcl.RangeBetween(tok.Range, operand.Range()),
|
|
SymbolRange: tok.Range,
|
|
}, diags
|
|
|
|
case TokenBang:
|
|
tok := p.Read() // eat bang token
|
|
|
|
// Important to use parseExpressionWithTraversals rather than parseExpression
|
|
// here, otherwise we can capture a following binary expression into
|
|
// our negation.
|
|
operand, diags := p.parseExpressionWithTraversals()
|
|
return &UnaryOpExpr{
|
|
Op: OpLogicalNot,
|
|
Val: operand,
|
|
|
|
SrcRange: hcl.RangeBetween(tok.Range, operand.Range()),
|
|
SymbolRange: tok.Range,
|
|
}, diags
|
|
|
|
case TokenOBrack:
|
|
return p.parseTupleCons()
|
|
|
|
case TokenOBrace:
|
|
return p.parseObjectCons()
|
|
|
|
default:
|
|
var diags hcl.Diagnostics
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid expression",
|
|
Detail: "Expected the start of an expression, but found an invalid expression token.",
|
|
Subject: &start.Range,
|
|
})
|
|
}
|
|
p.setRecovery()
|
|
|
|
// Return a placeholder so that the AST is still structurally sound
|
|
// even in the presence of parse errors.
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: start.Range,
|
|
}, diags
|
|
}
|
|
}
|
|
|
|
func (p *parser) numberLitValue(tok Token) (cty.Value, hcl.Diagnostics) {
|
|
// The cty.ParseNumberVal is always the same behavior as converting a
|
|
// string to a number, ensuring we always interpret decimal numbers in
|
|
// the same way.
|
|
numVal, err := cty.ParseNumberVal(string(tok.Bytes))
|
|
if err != nil {
|
|
ret := cty.UnknownVal(cty.Number)
|
|
return ret, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid number literal",
|
|
// FIXME: not a very good error message, but convert only
|
|
// gives us "a number is required", so not much help either.
|
|
Detail: "Failed to recognize the value of this number literal.",
|
|
Subject: &tok.Range,
|
|
},
|
|
}
|
|
}
|
|
return numVal, nil
|
|
}
|
|
|
|
// finishParsingFunctionCall parses a function call assuming that the function
|
|
// name was already read, and so the peeker should be pointing at the opening
|
|
// parenthesis after the name.
|
|
func (p *parser) finishParsingFunctionCall(name Token) (Expression, hcl.Diagnostics) {
|
|
openTok := p.Read()
|
|
if openTok.Type != TokenOParen {
|
|
// should never happen if callers behave
|
|
panic("finishParsingFunctionCall called with non-parenthesis as next token")
|
|
}
|
|
|
|
var args []Expression
|
|
var diags hcl.Diagnostics
|
|
var expandFinal bool
|
|
var closeTok Token
|
|
|
|
// Arbitrary newlines are allowed inside the function call parentheses.
|
|
p.PushIncludeNewlines(false)
|
|
|
|
Token:
|
|
for {
|
|
tok := p.Peek()
|
|
|
|
if tok.Type == TokenCParen {
|
|
closeTok = p.Read() // eat closing paren
|
|
break Token
|
|
}
|
|
|
|
arg, argDiags := p.ParseExpression()
|
|
args = append(args, arg)
|
|
diags = append(diags, argDiags...)
|
|
if p.recovery && argDiags.HasErrors() {
|
|
// if there was a parse error in the argument then we've
|
|
// probably been left in a weird place in the token stream,
|
|
// so we'll bail out with a partial argument list.
|
|
p.recover(TokenCParen)
|
|
break Token
|
|
}
|
|
|
|
sep := p.Read()
|
|
if sep.Type == TokenCParen {
|
|
closeTok = sep
|
|
break Token
|
|
}
|
|
|
|
if sep.Type == TokenEllipsis {
|
|
expandFinal = true
|
|
|
|
if p.Peek().Type != TokenCParen {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing closing parenthesis",
|
|
Detail: "An expanded function argument (with ...) must be immediately followed by closing parentheses.",
|
|
Subject: &sep.Range,
|
|
Context: hcl.RangeBetween(name.Range, sep.Range).Ptr(),
|
|
})
|
|
}
|
|
closeTok = p.recover(TokenCParen)
|
|
} else {
|
|
closeTok = p.Read() // eat closing paren
|
|
}
|
|
break Token
|
|
}
|
|
|
|
if sep.Type != TokenComma {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing argument separator",
|
|
Detail: "A comma is required to separate each function argument from the next.",
|
|
Subject: &sep.Range,
|
|
Context: hcl.RangeBetween(name.Range, sep.Range).Ptr(),
|
|
})
|
|
closeTok = p.recover(TokenCParen)
|
|
break Token
|
|
}
|
|
|
|
if p.Peek().Type == TokenCParen {
|
|
// A trailing comma after the last argument gets us in here.
|
|
closeTok = p.Read() // eat closing paren
|
|
break Token
|
|
}
|
|
|
|
}
|
|
|
|
p.PopIncludeNewlines()
|
|
|
|
return &FunctionCallExpr{
|
|
Name: string(name.Bytes),
|
|
Args: args,
|
|
|
|
ExpandFinal: expandFinal,
|
|
|
|
NameRange: name.Range,
|
|
OpenParenRange: openTok.Range,
|
|
CloseParenRange: closeTok.Range,
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) parseTupleCons() (Expression, hcl.Diagnostics) {
|
|
open := p.Read()
|
|
if open.Type != TokenOBrack {
|
|
// Should never happen if callers are behaving
|
|
panic("parseTupleCons called without peeker pointing to open bracket")
|
|
}
|
|
|
|
p.PushIncludeNewlines(false)
|
|
defer p.PopIncludeNewlines()
|
|
|
|
if forKeyword.TokenMatches(p.Peek()) {
|
|
return p.finishParsingForExpr(open)
|
|
}
|
|
|
|
var close Token
|
|
|
|
var diags hcl.Diagnostics
|
|
var exprs []Expression
|
|
|
|
for {
|
|
next := p.Peek()
|
|
if next.Type == TokenCBrack {
|
|
close = p.Read() // eat closer
|
|
break
|
|
}
|
|
|
|
expr, exprDiags := p.ParseExpression()
|
|
exprs = append(exprs, expr)
|
|
diags = append(diags, exprDiags...)
|
|
|
|
if p.recovery && exprDiags.HasErrors() {
|
|
// If expression parsing failed then we are probably in a strange
|
|
// place in the token stream, so we'll bail out and try to reset
|
|
// to after our closing bracket to allow parsing to continue.
|
|
close = p.recover(TokenCBrack)
|
|
break
|
|
}
|
|
|
|
next = p.Peek()
|
|
if next.Type == TokenCBrack {
|
|
close = p.Read() // eat closer
|
|
break
|
|
}
|
|
|
|
if next.Type != TokenComma {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing item separator",
|
|
Detail: "Expected a comma to mark the beginning of the next item.",
|
|
Subject: &next.Range,
|
|
Context: hcl.RangeBetween(open.Range, next.Range).Ptr(),
|
|
})
|
|
}
|
|
close = p.recover(TokenCBrack)
|
|
break
|
|
}
|
|
|
|
p.Read() // eat comma
|
|
|
|
}
|
|
|
|
return &TupleConsExpr{
|
|
Exprs: exprs,
|
|
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
OpenRange: open.Range,
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) parseObjectCons() (Expression, hcl.Diagnostics) {
|
|
open := p.Read()
|
|
if open.Type != TokenOBrace {
|
|
// Should never happen if callers are behaving
|
|
panic("parseObjectCons called without peeker pointing to open brace")
|
|
}
|
|
|
|
// We must temporarily stop looking at newlines here while we check for
|
|
// a "for" keyword, since for expressions are _not_ newline-sensitive,
|
|
// even though object constructors are.
|
|
p.PushIncludeNewlines(false)
|
|
isFor := forKeyword.TokenMatches(p.Peek())
|
|
p.PopIncludeNewlines()
|
|
if isFor {
|
|
return p.finishParsingForExpr(open)
|
|
}
|
|
|
|
p.PushIncludeNewlines(true)
|
|
defer p.PopIncludeNewlines()
|
|
|
|
var close Token
|
|
|
|
var diags hcl.Diagnostics
|
|
var items []ObjectConsItem
|
|
|
|
for {
|
|
next := p.Peek()
|
|
if next.Type == TokenNewline {
|
|
p.Read() // eat newline
|
|
continue
|
|
}
|
|
|
|
if next.Type == TokenCBrace {
|
|
close = p.Read() // eat closer
|
|
break
|
|
}
|
|
|
|
// Wrapping parens are not explicitly represented in the AST, but
|
|
// we want to use them here to disambiguate intepreting a mapping
|
|
// key as a full expression rather than just a name, and so
|
|
// we'll remember this was present and use it to force the
|
|
// behavior of our final ObjectConsKeyExpr.
|
|
forceNonLiteral := (p.Peek().Type == TokenOParen)
|
|
|
|
var key Expression
|
|
var keyDiags hcl.Diagnostics
|
|
key, keyDiags = p.ParseExpression()
|
|
diags = append(diags, keyDiags...)
|
|
|
|
if p.recovery && keyDiags.HasErrors() {
|
|
// If expression parsing failed then we are probably in a strange
|
|
// place in the token stream, so we'll bail out and try to reset
|
|
// to after our closing brace to allow parsing to continue.
|
|
close = p.recover(TokenCBrace)
|
|
break
|
|
}
|
|
|
|
// We wrap up the key expression in a special wrapper that deals
|
|
// with our special case that naked identifiers as object keys
|
|
// are interpreted as literal strings.
|
|
key = &ObjectConsKeyExpr{
|
|
Wrapped: key,
|
|
ForceNonLiteral: forceNonLiteral,
|
|
}
|
|
|
|
next = p.Peek()
|
|
if next.Type != TokenEqual && next.Type != TokenColon {
|
|
if !p.recovery {
|
|
switch next.Type {
|
|
case TokenNewline, TokenComma:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing attribute value",
|
|
Detail: "Expected an attribute value, introduced by an equals sign (\"=\").",
|
|
Subject: &next.Range,
|
|
Context: hcl.RangeBetween(open.Range, next.Range).Ptr(),
|
|
})
|
|
case TokenIdent:
|
|
// Although this might just be a plain old missing equals
|
|
// sign before a reference, one way to get here is to try
|
|
// to write an attribute name containing a period followed
|
|
// by a digit, which was valid in HCL1, like this:
|
|
// foo1.2_bar = "baz"
|
|
// We can't know exactly what the user intended here, but
|
|
// we'll augment our message with an extra hint in this case
|
|
// in case it is helpful.
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing key/value separator",
|
|
Detail: "Expected an equals sign (\"=\") to mark the beginning of the attribute value. If you intended to given an attribute name containing periods or spaces, write the name in quotes to create a string literal.",
|
|
Subject: &next.Range,
|
|
Context: hcl.RangeBetween(open.Range, next.Range).Ptr(),
|
|
})
|
|
default:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing key/value separator",
|
|
Detail: "Expected an equals sign (\"=\") to mark the beginning of the attribute value.",
|
|
Subject: &next.Range,
|
|
Context: hcl.RangeBetween(open.Range, next.Range).Ptr(),
|
|
})
|
|
}
|
|
}
|
|
close = p.recover(TokenCBrace)
|
|
break
|
|
}
|
|
|
|
p.Read() // eat equals sign or colon
|
|
|
|
value, valueDiags := p.ParseExpression()
|
|
diags = append(diags, valueDiags...)
|
|
|
|
if p.recovery && valueDiags.HasErrors() {
|
|
// If expression parsing failed then we are probably in a strange
|
|
// place in the token stream, so we'll bail out and try to reset
|
|
// to after our closing brace to allow parsing to continue.
|
|
close = p.recover(TokenCBrace)
|
|
break
|
|
}
|
|
|
|
items = append(items, ObjectConsItem{
|
|
KeyExpr: key,
|
|
ValueExpr: value,
|
|
})
|
|
|
|
next = p.Peek()
|
|
if next.Type == TokenCBrace {
|
|
close = p.Read() // eat closer
|
|
break
|
|
}
|
|
|
|
if next.Type != TokenComma && next.Type != TokenNewline {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Missing attribute separator",
|
|
Detail: "Expected a newline or comma to mark the beginning of the next attribute.",
|
|
Subject: &next.Range,
|
|
Context: hcl.RangeBetween(open.Range, next.Range).Ptr(),
|
|
})
|
|
}
|
|
close = p.recover(TokenCBrace)
|
|
break
|
|
}
|
|
|
|
p.Read() // eat comma or newline
|
|
|
|
}
|
|
|
|
return &ObjectConsExpr{
|
|
Items: items,
|
|
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
OpenRange: open.Range,
|
|
}, diags
|
|
}
|
|
|
|
func (p *parser) finishParsingForExpr(open Token) (Expression, hcl.Diagnostics) {
|
|
p.PushIncludeNewlines(false)
|
|
defer p.PopIncludeNewlines()
|
|
introducer := p.Read()
|
|
if !forKeyword.TokenMatches(introducer) {
|
|
// Should never happen if callers are behaving
|
|
panic("finishParsingForExpr called without peeker pointing to 'for' identifier")
|
|
}
|
|
|
|
var makeObj bool
|
|
var closeType TokenType
|
|
switch open.Type {
|
|
case TokenOBrace:
|
|
makeObj = true
|
|
closeType = TokenCBrace
|
|
case TokenOBrack:
|
|
makeObj = false // making a tuple
|
|
closeType = TokenCBrack
|
|
default:
|
|
// Should never happen if callers are behaving
|
|
panic("finishParsingForExpr called with invalid open token")
|
|
}
|
|
|
|
var diags hcl.Diagnostics
|
|
var keyName, valName string
|
|
|
|
if p.Peek().Type != TokenIdent {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "For expression requires variable name after 'for'.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
|
|
})
|
|
}
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
|
|
valName = string(p.Read().Bytes)
|
|
|
|
if p.Peek().Type == TokenComma {
|
|
// What we just read was actually the key, then.
|
|
keyName = valName
|
|
p.Read() // eat comma
|
|
|
|
if p.Peek().Type != TokenIdent {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "For expression requires value variable name after comma.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
|
|
})
|
|
}
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
|
|
valName = string(p.Read().Bytes)
|
|
}
|
|
|
|
if !inKeyword.TokenMatches(p.Peek()) {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "For expression requires the 'in' keyword after its name declarations.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
|
|
})
|
|
}
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
p.Read() // eat 'in' keyword
|
|
|
|
collExpr, collDiags := p.ParseExpression()
|
|
diags = append(diags, collDiags...)
|
|
if p.recovery && collDiags.HasErrors() {
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
|
|
if p.Peek().Type != TokenColon {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "For expression requires a colon after the collection expression.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
|
|
})
|
|
}
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
p.Read() // eat colon
|
|
|
|
var keyExpr, valExpr Expression
|
|
var keyDiags, valDiags hcl.Diagnostics
|
|
valExpr, valDiags = p.ParseExpression()
|
|
if p.Peek().Type == TokenFatArrow {
|
|
// What we just parsed was actually keyExpr
|
|
p.Read() // eat the fat arrow
|
|
keyExpr, keyDiags = valExpr, valDiags
|
|
|
|
valExpr, valDiags = p.ParseExpression()
|
|
}
|
|
diags = append(diags, keyDiags...)
|
|
diags = append(diags, valDiags...)
|
|
if p.recovery && (keyDiags.HasErrors() || valDiags.HasErrors()) {
|
|
close := p.recover(closeType)
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
|
|
group := false
|
|
var ellipsis Token
|
|
if p.Peek().Type == TokenEllipsis {
|
|
ellipsis = p.Read()
|
|
group = true
|
|
}
|
|
|
|
var condExpr Expression
|
|
var condDiags hcl.Diagnostics
|
|
if ifKeyword.TokenMatches(p.Peek()) {
|
|
p.Read() // eat "if"
|
|
condExpr, condDiags = p.ParseExpression()
|
|
diags = append(diags, condDiags...)
|
|
if p.recovery && condDiags.HasErrors() {
|
|
close := p.recover(p.oppositeBracket(open.Type))
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
}, diags
|
|
}
|
|
}
|
|
|
|
var close Token
|
|
if p.Peek().Type == closeType {
|
|
close = p.Read()
|
|
} else {
|
|
if !p.recovery {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "Extra characters after the end of the 'for' expression.",
|
|
Subject: p.Peek().Range.Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
|
|
})
|
|
}
|
|
close = p.recover(closeType)
|
|
}
|
|
|
|
if !makeObj {
|
|
if keyExpr != nil {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "Key expression is not valid when building a tuple.",
|
|
Subject: keyExpr.Range().Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, close.Range).Ptr(),
|
|
})
|
|
}
|
|
|
|
if group {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "Grouping ellipsis (...) cannot be used when building a tuple.",
|
|
Subject: &ellipsis.Range,
|
|
Context: hcl.RangeBetween(open.Range, close.Range).Ptr(),
|
|
})
|
|
}
|
|
} else {
|
|
if keyExpr == nil {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid 'for' expression",
|
|
Detail: "Key expression is required when building an object.",
|
|
Subject: valExpr.Range().Ptr(),
|
|
Context: hcl.RangeBetween(open.Range, close.Range).Ptr(),
|
|
})
|
|
}
|
|
}
|
|
|
|
return &ForExpr{
|
|
KeyVar: keyName,
|
|
ValVar: valName,
|
|
CollExpr: collExpr,
|
|
KeyExpr: keyExpr,
|
|
ValExpr: valExpr,
|
|
CondExpr: condExpr,
|
|
Group: group,
|
|
|
|
SrcRange: hcl.RangeBetween(open.Range, close.Range),
|
|
OpenRange: open.Range,
|
|
CloseRange: close.Range,
|
|
}, diags
|
|
}
|
|
|
|
// parseQuotedStringLiteral is a helper for parsing quoted strings that
|
|
// aren't allowed to contain any interpolations, such as block labels.
|
|
func (p *parser) parseQuotedStringLiteral() (string, hcl.Range, hcl.Diagnostics) {
|
|
oQuote := p.Read()
|
|
if oQuote.Type != TokenOQuote {
|
|
return "", oQuote.Range, hcl.Diagnostics{
|
|
{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid string literal",
|
|
Detail: "A quoted string is required here.",
|
|
Subject: &oQuote.Range,
|
|
},
|
|
}
|
|
}
|
|
|
|
var diags hcl.Diagnostics
|
|
ret := &bytes.Buffer{}
|
|
var cQuote Token
|
|
|
|
Token:
|
|
for {
|
|
tok := p.Read()
|
|
switch tok.Type {
|
|
|
|
case TokenCQuote:
|
|
cQuote = tok
|
|
break Token
|
|
|
|
case TokenQuotedLit:
|
|
s, sDiags := ParseStringLiteralToken(tok)
|
|
diags = append(diags, sDiags...)
|
|
ret.WriteString(s)
|
|
|
|
case TokenTemplateControl, TokenTemplateInterp:
|
|
which := "$"
|
|
if tok.Type == TokenTemplateControl {
|
|
which = "%"
|
|
}
|
|
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid string literal",
|
|
Detail: fmt.Sprintf(
|
|
"Template sequences are not allowed in this string. To include a literal %q, double it (as \"%s%s\") to escape it.",
|
|
which, which, which,
|
|
),
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
|
|
})
|
|
|
|
// Now that we're returning an error callers won't attempt to use
|
|
// the result for any real operations, but they might try to use
|
|
// the partial AST for other analyses, so we'll leave a marker
|
|
// to indicate that there was something invalid in the string to
|
|
// help avoid misinterpretation of the partial result
|
|
ret.WriteString(which)
|
|
ret.WriteString("{ ... }")
|
|
|
|
p.recover(TokenTemplateSeqEnd) // we'll try to keep parsing after the sequence ends
|
|
|
|
case TokenEOF:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Unterminated string literal",
|
|
Detail: "Unable to find the closing quote mark before the end of the file.",
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
|
|
})
|
|
break Token
|
|
|
|
default:
|
|
// Should never happen, as long as the scanner is behaving itself
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid string literal",
|
|
Detail: "This item is not valid in a string literal.",
|
|
Subject: &tok.Range,
|
|
Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
|
|
})
|
|
p.recover(TokenCQuote)
|
|
break Token
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret.String(), hcl.RangeBetween(oQuote.Range, cQuote.Range), diags
|
|
}
|
|
|
|
// ParseStringLiteralToken processes the given token, which must be either a
|
|
// TokenQuotedLit or a TokenStringLit, returning the string resulting from
|
|
// resolving any escape sequences.
|
|
//
|
|
// If any error diagnostics are returned, the returned string may be incomplete
|
|
// or otherwise invalid.
|
|
func ParseStringLiteralToken(tok Token) (string, hcl.Diagnostics) {
|
|
var quoted bool
|
|
switch tok.Type {
|
|
case TokenQuotedLit:
|
|
quoted = true
|
|
case TokenStringLit:
|
|
quoted = false
|
|
default:
|
|
panic("ParseStringLiteralToken can only be used with TokenStringLit and TokenQuotedLit tokens")
|
|
}
|
|
var diags hcl.Diagnostics
|
|
|
|
ret := make([]byte, 0, len(tok.Bytes))
|
|
slices := scanStringLit(tok.Bytes, quoted)
|
|
|
|
// We will mutate rng constantly as we walk through our token slices below.
|
|
// Any diagnostics must take a copy of this rng rather than simply pointing
|
|
// to it, e.g. by using rng.Ptr() rather than &rng.
|
|
rng := tok.Range
|
|
rng.End = rng.Start
|
|
|
|
Slices:
|
|
for _, slice := range slices {
|
|
if len(slice) == 0 {
|
|
continue
|
|
}
|
|
|
|
// Advance the start of our range to where the previous token ended
|
|
rng.Start = rng.End
|
|
|
|
// Advance the end of our range to after our token.
|
|
b := slice
|
|
for len(b) > 0 {
|
|
adv, ch, _ := textseg.ScanGraphemeClusters(b, true)
|
|
rng.End.Byte += adv
|
|
switch ch[0] {
|
|
case '\r', '\n':
|
|
rng.End.Line++
|
|
rng.End.Column = 1
|
|
default:
|
|
rng.End.Column++
|
|
}
|
|
b = b[adv:]
|
|
}
|
|
|
|
TokenType:
|
|
switch slice[0] {
|
|
case '\\':
|
|
if !quoted {
|
|
// If we're not in quoted mode then just treat this token as
|
|
// normal. (Slices can still start with backslash even if we're
|
|
// not specifically looking for backslash sequences.)
|
|
break TokenType
|
|
}
|
|
if len(slice) < 2 {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid escape sequence",
|
|
Detail: "Backslash must be followed by an escape sequence selector character.",
|
|
Subject: rng.Ptr(),
|
|
})
|
|
break TokenType
|
|
}
|
|
|
|
switch slice[1] {
|
|
|
|
case 'n':
|
|
ret = append(ret, '\n')
|
|
continue Slices
|
|
case 'r':
|
|
ret = append(ret, '\r')
|
|
continue Slices
|
|
case 't':
|
|
ret = append(ret, '\t')
|
|
continue Slices
|
|
case '"':
|
|
ret = append(ret, '"')
|
|
continue Slices
|
|
case '\\':
|
|
ret = append(ret, '\\')
|
|
continue Slices
|
|
case 'u', 'U':
|
|
if slice[1] == 'u' && len(slice) != 6 {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid escape sequence",
|
|
Detail: "The \\u escape sequence must be followed by four hexadecimal digits.",
|
|
Subject: rng.Ptr(),
|
|
})
|
|
break TokenType
|
|
} else if slice[1] == 'U' && len(slice) != 10 {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid escape sequence",
|
|
Detail: "The \\U escape sequence must be followed by eight hexadecimal digits.",
|
|
Subject: rng.Ptr(),
|
|
})
|
|
break TokenType
|
|
}
|
|
|
|
numHex := string(slice[2:])
|
|
num, err := strconv.ParseUint(numHex, 16, 32)
|
|
if err != nil {
|
|
// Should never happen because the scanner won't match
|
|
// a sequence of digits that isn't valid.
|
|
panic(err)
|
|
}
|
|
|
|
r := rune(num)
|
|
l := utf8.RuneLen(r)
|
|
if l == -1 {
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid escape sequence",
|
|
Detail: fmt.Sprintf("Cannot encode character U+%04x in UTF-8.", num),
|
|
Subject: rng.Ptr(),
|
|
})
|
|
break TokenType
|
|
}
|
|
for i := 0; i < l; i++ {
|
|
ret = append(ret, 0)
|
|
}
|
|
rb := ret[len(ret)-l:]
|
|
utf8.EncodeRune(rb, r)
|
|
|
|
continue Slices
|
|
|
|
default:
|
|
diags = append(diags, &hcl.Diagnostic{
|
|
Severity: hcl.DiagError,
|
|
Summary: "Invalid escape sequence",
|
|
Detail: fmt.Sprintf("The symbol %q is not a valid escape sequence selector.", slice[1:]),
|
|
Subject: rng.Ptr(),
|
|
})
|
|
ret = append(ret, slice[1:]...)
|
|
continue Slices
|
|
}
|
|
|
|
case '$', '%':
|
|
if len(slice) != 3 {
|
|
// Not long enough to be our escape sequence, so it's literal.
|
|
break TokenType
|
|
}
|
|
|
|
if slice[1] == slice[0] && slice[2] == '{' {
|
|
ret = append(ret, slice[0])
|
|
ret = append(ret, '{')
|
|
continue Slices
|
|
}
|
|
|
|
break TokenType
|
|
}
|
|
|
|
// If we fall out here or break out of here from the switch above
|
|
// then this slice is just a literal.
|
|
ret = append(ret, slice...)
|
|
}
|
|
|
|
return string(ret), diags
|
|
}
|
|
|
|
// setRecovery turns on recovery mode without actually doing any recovery.
|
|
// This can be used when a parser knowingly leaves the peeker in a useless
|
|
// place and wants to suppress errors that might result from that decision.
|
|
func (p *parser) setRecovery() {
|
|
p.recovery = true
|
|
}
|
|
|
|
// recover seeks forward in the token stream until it finds TokenType "end",
|
|
// then returns with the peeker pointed at the following token.
|
|
//
|
|
// If the given token type is a bracketer, this function will additionally
|
|
// count nested instances of the brackets to try to leave the peeker at
|
|
// the end of the _current_ instance of that bracketer, skipping over any
|
|
// nested instances. This is a best-effort operation and may have
|
|
// unpredictable results on input with bad bracketer nesting.
|
|
func (p *parser) recover(end TokenType) Token {
|
|
start := p.oppositeBracket(end)
|
|
p.recovery = true
|
|
|
|
nest := 0
|
|
for {
|
|
tok := p.Read()
|
|
ty := tok.Type
|
|
if end == TokenTemplateSeqEnd && ty == TokenTemplateControl {
|
|
// normalize so that our matching behavior can work, since
|
|
// TokenTemplateControl/TokenTemplateInterp are asymmetrical
|
|
// with TokenTemplateSeqEnd and thus we need to count both
|
|
// openers if that's the closer we're looking for.
|
|
ty = TokenTemplateInterp
|
|
}
|
|
|
|
switch ty {
|
|
case start:
|
|
nest++
|
|
case end:
|
|
if nest < 1 {
|
|
return tok
|
|
}
|
|
|
|
nest--
|
|
case TokenEOF:
|
|
return tok
|
|
}
|
|
}
|
|
}
|
|
|
|
// recoverOver seeks forward in the token stream until it finds a block
|
|
// starting with TokenType "start", then finds the corresponding end token,
|
|
// leaving the peeker pointed at the token after that end token.
|
|
//
|
|
// The given token type _must_ be a bracketer. For example, if the given
|
|
// start token is TokenOBrace then the parser will be left at the _end_ of
|
|
// the next brace-delimited block encountered, or at EOF if no such block
|
|
// is found or it is unclosed.
|
|
func (p *parser) recoverOver(start TokenType) {
|
|
end := p.oppositeBracket(start)
|
|
|
|
// find the opening bracket first
|
|
Token:
|
|
for {
|
|
tok := p.Read()
|
|
switch tok.Type {
|
|
case start, TokenEOF:
|
|
break Token
|
|
}
|
|
}
|
|
|
|
// Now use our existing recover function to locate the _end_ of the
|
|
// container we've found.
|
|
p.recover(end)
|
|
}
|
|
|
|
func (p *parser) recoverAfterBodyItem() {
|
|
p.recovery = true
|
|
var open []TokenType
|
|
|
|
Token:
|
|
for {
|
|
tok := p.Read()
|
|
|
|
switch tok.Type {
|
|
|
|
case TokenNewline:
|
|
if len(open) == 0 {
|
|
break Token
|
|
}
|
|
|
|
case TokenEOF:
|
|
break Token
|
|
|
|
case TokenOBrace, TokenOBrack, TokenOParen, TokenOQuote, TokenOHeredoc, TokenTemplateInterp, TokenTemplateControl:
|
|
open = append(open, tok.Type)
|
|
|
|
case TokenCBrace, TokenCBrack, TokenCParen, TokenCQuote, TokenCHeredoc:
|
|
opener := p.oppositeBracket(tok.Type)
|
|
for len(open) > 0 && open[len(open)-1] != opener {
|
|
open = open[:len(open)-1]
|
|
}
|
|
if len(open) > 0 {
|
|
open = open[:len(open)-1]
|
|
}
|
|
|
|
case TokenTemplateSeqEnd:
|
|
for len(open) > 0 && open[len(open)-1] != TokenTemplateInterp && open[len(open)-1] != TokenTemplateControl {
|
|
open = open[:len(open)-1]
|
|
}
|
|
if len(open) > 0 {
|
|
open = open[:len(open)-1]
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// oppositeBracket finds the bracket that opposes the given bracketer, or
|
|
// NilToken if the given token isn't a bracketer.
|
|
//
|
|
// "Bracketer", for the sake of this function, is one end of a matching
|
|
// open/close set of tokens that establish a bracketing context.
|
|
func (p *parser) oppositeBracket(ty TokenType) TokenType {
|
|
switch ty {
|
|
|
|
case TokenOBrace:
|
|
return TokenCBrace
|
|
case TokenOBrack:
|
|
return TokenCBrack
|
|
case TokenOParen:
|
|
return TokenCParen
|
|
case TokenOQuote:
|
|
return TokenCQuote
|
|
case TokenOHeredoc:
|
|
return TokenCHeredoc
|
|
|
|
case TokenCBrace:
|
|
return TokenOBrace
|
|
case TokenCBrack:
|
|
return TokenOBrack
|
|
case TokenCParen:
|
|
return TokenOParen
|
|
case TokenCQuote:
|
|
return TokenOQuote
|
|
case TokenCHeredoc:
|
|
return TokenOHeredoc
|
|
|
|
case TokenTemplateControl:
|
|
return TokenTemplateSeqEnd
|
|
case TokenTemplateInterp:
|
|
return TokenTemplateSeqEnd
|
|
case TokenTemplateSeqEnd:
|
|
// This is ambigous, but we return Interp here because that's
|
|
// what's assumed by the "recover" method.
|
|
return TokenTemplateInterp
|
|
|
|
default:
|
|
return TokenNil
|
|
}
|
|
}
|
|
|
|
func errPlaceholderExpr(rng hcl.Range) Expression {
|
|
return &LiteralValueExpr{
|
|
Val: cty.DynamicVal,
|
|
SrcRange: rng,
|
|
}
|
|
}
|