hcl/diagnostic_text.go
Martin Atkins 6c4344623b Unfold the "hcl" directory up into the root
The main HCL package is more visible this way, and so it's easier than
having to pick it out from dozens of other package directories.
2019-09-09 16:08:19 -07:00

312 lines
8.3 KiB
Go

package hcl
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"sort"
wordwrap "github.com/mitchellh/go-wordwrap"
"github.com/zclconf/go-cty/cty"
)
type diagnosticTextWriter struct {
files map[string]*File
wr io.Writer
width uint
color bool
}
// NewDiagnosticTextWriter creates a DiagnosticWriter that writes diagnostics
// to the given writer as formatted text.
//
// It is designed to produce text appropriate to print in a monospaced font
// in a terminal of a particular width, or optionally with no width limit.
//
// The given width may be zero to disable word-wrapping of the detail text
// and truncation of source code snippets.
//
// If color is set to true, the output will include VT100 escape sequences to
// color-code the severity indicators. It is suggested to turn this off if
// the target writer is not a terminal.
func NewDiagnosticTextWriter(wr io.Writer, files map[string]*File, width uint, color bool) DiagnosticWriter {
return &diagnosticTextWriter{
files: files,
wr: wr,
width: width,
color: color,
}
}
func (w *diagnosticTextWriter) WriteDiagnostic(diag *Diagnostic) error {
if diag == nil {
return errors.New("nil diagnostic")
}
var colorCode, highlightCode, resetCode string
if w.color {
switch diag.Severity {
case DiagError:
colorCode = "\x1b[31m"
case DiagWarning:
colorCode = "\x1b[33m"
}
resetCode = "\x1b[0m"
highlightCode = "\x1b[1;4m"
}
var severityStr string
switch diag.Severity {
case DiagError:
severityStr = "Error"
case DiagWarning:
severityStr = "Warning"
default:
// should never happen
severityStr = "???????"
}
fmt.Fprintf(w.wr, "%s%s%s: %s\n\n", colorCode, severityStr, resetCode, diag.Summary)
if diag.Subject != nil {
snipRange := *diag.Subject
highlightRange := snipRange
if diag.Context != nil {
// Show enough of the source code to include both the subject
// and context ranges, which overlap in all reasonable
// situations.
snipRange = RangeOver(snipRange, *diag.Context)
}
// We can't illustrate an empty range, so we'll turn such ranges into
// single-character ranges, which might not be totally valid (may point
// off the end of a line, or off the end of the file) but are good
// enough for the bounds checks we do below.
if snipRange.Empty() {
snipRange.End.Byte++
snipRange.End.Column++
}
if highlightRange.Empty() {
highlightRange.End.Byte++
highlightRange.End.Column++
}
file := w.files[diag.Subject.Filename]
if file == nil || file.Bytes == nil {
fmt.Fprintf(w.wr, " on %s line %d:\n (source code not available)\n\n", diag.Subject.Filename, diag.Subject.Start.Line)
} else {
var contextLine string
if diag.Subject != nil {
contextLine = contextString(file, diag.Subject.Start.Byte)
if contextLine != "" {
contextLine = ", in " + contextLine
}
}
fmt.Fprintf(w.wr, " on %s line %d%s:\n", diag.Subject.Filename, diag.Subject.Start.Line, contextLine)
src := file.Bytes
sc := NewRangeScanner(src, diag.Subject.Filename, bufio.ScanLines)
for sc.Scan() {
lineRange := sc.Range()
if !lineRange.Overlaps(snipRange) {
continue
}
beforeRange, highlightedRange, afterRange := lineRange.PartitionAround(highlightRange)
if highlightedRange.Empty() {
fmt.Fprintf(w.wr, "%4d: %s\n", lineRange.Start.Line, sc.Bytes())
} else {
before := beforeRange.SliceBytes(src)
highlighted := highlightedRange.SliceBytes(src)
after := afterRange.SliceBytes(src)
fmt.Fprintf(
w.wr, "%4d: %s%s%s%s%s\n",
lineRange.Start.Line,
before,
highlightCode, highlighted, resetCode,
after,
)
}
}
w.wr.Write([]byte{'\n'})
}
if diag.Expression != nil && diag.EvalContext != nil {
// We will attempt to render the values for any variables
// referenced in the given expression as additional context, for
// situations where the same expression is evaluated multiple
// times in different scopes.
expr := diag.Expression
ctx := diag.EvalContext
vars := expr.Variables()
stmts := make([]string, 0, len(vars))
seen := make(map[string]struct{}, len(vars))
for _, traversal := range vars {
val, diags := traversal.TraverseAbs(ctx)
if diags.HasErrors() {
// Skip anything that generates errors, since we probably
// already have the same error in our diagnostics set
// already.
continue
}
traversalStr := w.traversalStr(traversal)
if _, exists := seen[traversalStr]; exists {
continue // don't show duplicates when the same variable is referenced multiple times
}
switch {
case !val.IsKnown():
// Can't say anything about this yet, then.
continue
case val.IsNull():
stmts = append(stmts, fmt.Sprintf("%s set to null", traversalStr))
default:
stmts = append(stmts, fmt.Sprintf("%s as %s", traversalStr, w.valueStr(val)))
}
seen[traversalStr] = struct{}{}
}
sort.Strings(stmts) // FIXME: Should maybe use a traversal-aware sort that can sort numeric indexes properly?
last := len(stmts) - 1
for i, stmt := range stmts {
switch i {
case 0:
w.wr.Write([]byte{'w', 'i', 't', 'h', ' '})
default:
w.wr.Write([]byte{' ', ' ', ' ', ' ', ' '})
}
w.wr.Write([]byte(stmt))
switch i {
case last:
w.wr.Write([]byte{'.', '\n', '\n'})
default:
w.wr.Write([]byte{',', '\n'})
}
}
}
}
if diag.Detail != "" {
detail := diag.Detail
if w.width != 0 {
detail = wordwrap.WrapString(detail, w.width)
}
fmt.Fprintf(w.wr, "%s\n\n", detail)
}
return nil
}
func (w *diagnosticTextWriter) WriteDiagnostics(diags Diagnostics) error {
for _, diag := range diags {
err := w.WriteDiagnostic(diag)
if err != nil {
return err
}
}
return nil
}
func (w *diagnosticTextWriter) traversalStr(traversal Traversal) string {
// This is a specialized subset of traversal rendering tailored to
// producing helpful contextual messages in diagnostics. It is not
// comprehensive nor intended to be used for other purposes.
var buf bytes.Buffer
for _, step := range traversal {
switch tStep := step.(type) {
case TraverseRoot:
buf.WriteString(tStep.Name)
case TraverseAttr:
buf.WriteByte('.')
buf.WriteString(tStep.Name)
case TraverseIndex:
buf.WriteByte('[')
if keyTy := tStep.Key.Type(); keyTy.IsPrimitiveType() {
buf.WriteString(w.valueStr(tStep.Key))
} else {
// We'll just use a placeholder for more complex values,
// since otherwise our result could grow ridiculously long.
buf.WriteString("...")
}
buf.WriteByte(']')
}
}
return buf.String()
}
func (w *diagnosticTextWriter) valueStr(val cty.Value) string {
// This is a specialized subset of value rendering tailored to producing
// helpful but concise messages in diagnostics. It is not comprehensive
// nor intended to be used for other purposes.
ty := val.Type()
switch {
case val.IsNull():
return "null"
case !val.IsKnown():
// Should never happen here because we should filter before we get
// in here, but we'll do something reasonable rather than panic.
return "(not yet known)"
case ty == cty.Bool:
if val.True() {
return "true"
}
return "false"
case ty == cty.Number:
bf := val.AsBigFloat()
return bf.Text('g', 10)
case ty == cty.String:
// Go string syntax is not exactly the same as HCL native string syntax,
// but we'll accept the minor edge-cases where this is different here
// for now, just to get something reasonable here.
return fmt.Sprintf("%q", val.AsString())
case ty.IsCollectionType() || ty.IsTupleType():
l := val.LengthInt()
switch l {
case 0:
return "empty " + ty.FriendlyName()
case 1:
return ty.FriendlyName() + " with 1 element"
default:
return fmt.Sprintf("%s with %d elements", ty.FriendlyName(), l)
}
case ty.IsObjectType():
atys := ty.AttributeTypes()
l := len(atys)
switch l {
case 0:
return "object with no attributes"
case 1:
var name string
for k := range atys {
name = k
}
return fmt.Sprintf("object with 1 attribute %q", name)
default:
return fmt.Sprintf("object with %d attributes", l)
}
default:
return ty.FriendlyName()
}
}
func contextString(file *File, offset int) string {
type contextStringer interface {
ContextString(offset int) string
}
if cser, ok := file.Nav.(contextStringer); ok {
return cser.ContextString(offset)
}
return ""
}