hcl/printer/nodes.go

449 lines
10 KiB
Go

package printer
import (
"bytes"
"fmt"
"sort"
"github.com/fatih/hcl/ast"
"github.com/fatih/hcl/token"
)
const (
blank = byte(' ')
newline = byte('\n')
tab = byte('\t')
)
type printer struct {
cfg Config
prev ast.Node
comments []*ast.CommentGroup // may be nil, contains all comments
standaloneComments []*ast.CommentGroup // contains all standalone comments (not assigned to any node)
enableTrace bool
indentTrace int
}
type ByPosition []*ast.CommentGroup
func (b ByPosition) Len() int { return len(b) }
func (b ByPosition) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b ByPosition) Less(i, j int) bool { return b[i].Pos().Before(b[j].Pos()) }
func (p *printer) collectComments(node ast.Node) {
// first collect all comments. This is already stored in
// ast.File.(comments)
ast.Walk(node, func(nn ast.Node) bool {
switch t := nn.(type) {
case *ast.File:
p.comments = t.Comments
return false
}
return true
})
standaloneComments := make(map[token.Pos]*ast.CommentGroup, 0)
for _, c := range p.comments {
standaloneComments[c.Pos()] = c
}
// next remove all lead and line comments from the overall comment map.
// This will give us comments which are standalone, comments which are not
// assigned to any kind of node.
ast.Walk(node, func(nn ast.Node) bool {
switch t := nn.(type) {
case *ast.ObjectItem:
if t.LeadComment != nil {
for _, comment := range t.LeadComment.List {
if _, ok := standaloneComments[comment.Pos()]; ok {
delete(standaloneComments, comment.Pos())
}
}
}
if t.LineComment != nil {
for _, comment := range t.LineComment.List {
if _, ok := standaloneComments[comment.Pos()]; ok {
delete(standaloneComments, comment.Pos())
}
}
}
}
return true
})
for _, c := range standaloneComments {
p.standaloneComments = append(p.standaloneComments, c)
}
sort.Sort(ByPosition(p.standaloneComments))
fmt.Printf("standaloneComments = %+v\n", len(p.standaloneComments))
for _, c := range p.standaloneComments {
for _, comment := range c.List {
fmt.Printf("comment = %+v\n", comment)
}
}
}
var count int
// output prints creates b printable HCL output and returns it.
func (p *printer) output(n interface{}) []byte {
var buf bytes.Buffer
count++
switch t := n.(type) {
case *ast.File:
return p.output(t.Node)
case *ast.ObjectList:
for i, item := range t.Items {
fmt.Printf("[%d] item: %s\n", i, item.Keys[0].Token.Text)
buf.Write(p.output(item))
if i != len(t.Items)-1 {
buf.Write([]byte{newline, newline})
}
}
case *ast.ObjectKey:
buf.WriteString(t.Token.Text)
case *ast.ObjectItem:
for _, c := range p.standaloneComments {
for _, comment := range c.List {
fmt.Printf("[%d] OBJECTITEM p.prev = %+v\n", count, p.prev.Pos())
fmt.Printf("[%d] OBJECTITEM comment.Pos() = %+v\n", count, comment.Pos())
fmt.Printf("[%d] OBJECTTYPE t.Pos() = %+v\n", count, t.Pos())
if comment.Pos().After(p.prev.Pos()) && comment.Pos().Before(t.Pos()) {
buf.WriteString(comment.Text)
// TODO(arslan): do not print new lines if the comments are one lines
buf.WriteByte(newline)
buf.WriteByte(newline)
}
}
}
p.prev = t
buf.Write(p.objectItem(t))
case *ast.LiteralType:
buf.WriteString(t.Token.Text)
case *ast.ListType:
buf.Write(p.list(t))
case *ast.ObjectType:
buf.Write(p.objectType(t))
default:
fmt.Printf(" unknown type: %T\n", n)
}
// if item, ok := n.(ast.Node); ok {
// p.prev = item
// }
return buf.Bytes()
}
func (p *printer) objectItem(o *ast.ObjectItem) []byte {
defer un(trace(p, fmt.Sprintf("ObjectItem: %s", o.Keys[0].Token.Text)))
var buf bytes.Buffer
if o.LeadComment != nil {
for _, comment := range o.LeadComment.List {
buf.WriteString(comment.Text)
buf.WriteByte(newline)
}
}
for i, k := range o.Keys {
buf.WriteString(k.Token.Text)
buf.WriteByte(blank)
// reach end of key
if i == len(o.Keys)-1 && len(o.Keys) == 1 {
buf.WriteString("=")
buf.WriteByte(blank)
}
}
buf.Write(p.output(o.Val))
if o.Val.Pos().Line == o.Keys[0].Pos().Line && o.LineComment != nil {
buf.WriteByte(blank)
for _, comment := range o.LineComment.List {
buf.WriteString(comment.Text)
}
}
return buf.Bytes()
}
func (p *printer) objectType(o *ast.ObjectType) []byte {
defer un(trace(p, "ObjectType"))
var buf bytes.Buffer
buf.WriteString("{")
buf.WriteByte(newline)
var index int
var nextItem token.Pos
for {
for _, c := range p.standaloneComments {
for _, comment := range c.List {
fmt.Printf("[%d] OBJECTTYPE p.prev = %+v\n", count, p.prev.Pos())
fmt.Printf("[%d] OBJECTTYPE comment.Pos() = %+v\n", count, comment.Pos())
if index != len(o.List.Items) {
nextItem = o.List.Items[index].Pos()
} else {
nextItem = o.Rbrace
}
fmt.Printf("[%d] OBJECTTYPE nextItem = %+v\n", count, nextItem)
if comment.Pos().After(p.prev.Pos()) && comment.Pos().Before(nextItem) {
buf.Write(p.indent([]byte(comment.Text))) // TODO(arslan): indent
buf.WriteByte(newline)
buf.WriteByte(newline)
}
}
}
if index == len(o.List.Items) {
break
}
// check if we have adjacent one liner items. If yes we'll going to align
// the comments.
var aligned []*ast.ObjectItem
for _, item := range o.List.Items[index:] {
// we don't group one line lists
if len(o.List.Items) == 1 {
break
}
// one means a oneliner with out any lead comment
// two means a oneliner with lead comment
// anything else might be something else
cur := lines(string(p.objectItem(item)))
if cur > 2 {
break
}
curPos := item.Pos()
nextPos := token.Pos{}
if index != len(o.List.Items)-1 {
nextPos = o.List.Items[index+1].Pos()
}
prevPos := token.Pos{}
if index != 0 {
prevPos = o.List.Items[index-1].Pos()
}
// fmt.Println("DEBUG ----------------")
// fmt.Printf("prev = %+v prevPos: %s\n", prev, prevPos)
// fmt.Printf("cur = %+v curPos: %s\n", cur, curPos)
// fmt.Printf("next = %+v nextPos: %s\n", next, nextPos)
if curPos.Line+1 == nextPos.Line {
aligned = append(aligned, item)
index++
continue
}
if curPos.Line-1 == prevPos.Line {
aligned = append(aligned, item)
index++
// finish if we have a new line or comment next. This happens
// if the next item is not adjacent
if curPos.Line+1 != nextPos.Line {
break
}
continue
}
break
}
fmt.Printf("==================> len(aligned) = %+v\n", len(aligned))
for _, b := range aligned {
fmt.Printf("b = %+v\n", b)
}
// put newlines if the items are between other non aligned items
if index != len(aligned) {
buf.WriteByte(newline)
}
if len(aligned) >= 1 {
p.prev = aligned[len(aligned)-1]
items := p.alignedItems(aligned)
buf.Write(p.indent(items))
} else {
p.prev = o.List.Items[index]
buf.Write(p.indent(p.objectItem(o.List.Items[index])))
index++
}
buf.WriteByte(newline)
}
buf.WriteString("}")
return buf.Bytes()
}
func (p *printer) alignedItems(items []*ast.ObjectItem) []byte {
var buf bytes.Buffer
var longestLine int
for _, item := range items {
lineLen := len(item.Keys[0].Token.Text) + len(p.output(item.Val))
if lineLen > longestLine {
longestLine = lineLen
}
}
for i, item := range items {
if item.LeadComment != nil {
for _, comment := range item.LeadComment.List {
buf.WriteString(comment.Text)
buf.WriteByte(newline)
}
}
curLen := 0
for i, k := range item.Keys {
buf.WriteString(k.Token.Text)
buf.WriteByte(blank)
// reach end of key
if i == len(item.Keys)-1 && len(item.Keys) == 1 {
buf.WriteString("=")
buf.WriteByte(blank)
}
curLen = len(k.Token.Text) // two blanks and one assign
}
val := p.output(item.Val)
buf.Write(val)
curLen += len(val)
if item.Val.Pos().Line == item.Keys[0].Pos().Line && item.LineComment != nil {
for i := 0; i < longestLine-curLen+1; i++ {
buf.WriteByte(blank)
}
for _, comment := range item.LineComment.List {
buf.WriteString(comment.Text)
}
}
// do not print for the last item
if i != len(items)-1 {
buf.WriteByte(newline)
}
}
return buf.Bytes()
}
func (p *printer) literal(l *ast.LiteralType) []byte {
return []byte(l.Token.Text)
}
// printList prints a HCL list
func (p *printer) list(l *ast.ListType) []byte {
var buf bytes.Buffer
buf.WriteString("[")
for i, item := range l.List {
if item.Pos().Line != l.Lbrack.Line {
// multiline list, add newline before we add each item
buf.WriteByte(newline)
// also indent each line
buf.Write(p.indent(p.output(item)))
} else {
buf.Write(p.output(item))
}
if i != len(l.List)-1 {
buf.WriteString(",")
buf.WriteByte(blank)
} else if item.Pos().Line != l.Lbrack.Line {
buf.WriteString(",")
buf.WriteByte(newline)
}
}
buf.WriteString("]")
return buf.Bytes()
}
// indent indents the lines of the given buffer for each non-empty line
func (p *printer) indent(buf []byte) []byte {
var prefix []byte
if p.cfg.SpacesWidth != 0 {
for i := 0; i < p.cfg.SpacesWidth; i++ {
prefix = append(prefix, blank)
}
} else {
prefix = []byte{tab}
}
var res []byte
bol := true
for _, c := range buf {
if bol && c != '\n' {
res = append(res, prefix...)
}
res = append(res, c)
bol = c == '\n'
}
return res
}
func lines(txt string) int {
endline := 1
for i := 0; i < len(txt); i++ {
if txt[i] == '\n' {
endline++
}
}
return endline
}
// ----------------------------------------------------------------------------
// Tracing support
func (p *printer) printTrace(a ...interface{}) {
if !p.enableTrace {
return
}
const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
const n = len(dots)
i := 2 * p.indentTrace
for i > n {
fmt.Print(dots)
i -= n
}
// i <= n
fmt.Print(dots[0:i])
fmt.Println(a...)
}
func trace(p *printer, msg string) *printer {
p.printTrace(msg, "(")
p.indentTrace++
return p
}
// Usage pattern: defer un(trace(p, "..."))
func un(p *printer) {
p.indentTrace--
p.printTrace(")")
}