hcl/hcl/hclsyntax/expression.go
Martin Atkins cc8b14cf45 hclsyntax: "null", "true", "false" AbsTraversalForExpr
The contract for AbsTraversalForExpr calls for us to interpret an
expression as if it were traversal syntax. Traversal syntax does not have
the special keywords "null", "true" and "false", so we must interpret
these as TraverseRoot rather than as literal values.

Previously this wasn't working because the parser converted these to
literals too early. To make this work properly, we implement
AbsTraversalForExpr on literal expressions and effectively "undo" the
parser's re-interpretation of these keywords to back out to the original
keyword strings.

We also rework how object keys are handled so that we wait until eval time
to decide whether to interpret the key expression as an unquoted literal
string. This allows us to properly support AbsTraversalForExpr on keys
in object constructors, bypassing the string-interpretation behavior in
that case.
2018-02-26 08:38:35 -08:00

1261 lines
32 KiB
Go

package hclsyntax
import (
"fmt"
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
// Expression is the abstract type for nodes that behave as HCL expressions.
type Expression interface {
Node
// The hcl.Expression methods are duplicated here, rather than simply
// embedded, because both Node and hcl.Expression have a Range method
// and so they conflict.
Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics)
Variables() []hcl.Traversal
StartRange() hcl.Range
}
// Assert that Expression implements hcl.Expression
var assertExprImplExpr hcl.Expression = Expression(nil)
// LiteralValueExpr is an expression that just always returns a given value.
type LiteralValueExpr struct {
Val cty.Value
SrcRange hcl.Range
}
func (e *LiteralValueExpr) walkChildNodes(w internalWalkFunc) {
// Literal values have no child nodes
}
func (e *LiteralValueExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return e.Val, nil
}
func (e *LiteralValueExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *LiteralValueExpr) StartRange() hcl.Range {
return e.SrcRange
}
// Implementation for hcl.AbsTraversalForExpr.
func (e *LiteralValueExpr) AsTraversal() hcl.Traversal {
// This one's a little weird: the contract for AsTraversal is to interpret
// an expression as if it were traversal syntax, and traversal syntax
// doesn't have the special keywords "null", "true", and "false" so these
// are expected to be treated like variables in that case.
// Since our parser already turned them into LiteralValueExpr by the time
// we get here, we need to undo this and infer the name that would've
// originally led to our value.
// We don't do anything for any other values, since they don't overlap
// with traversal roots.
if e.Val.IsNull() {
// In practice the parser only generates null values of the dynamic
// pseudo-type for literals, so we can safely assume that any null
// was orignally the keyword "null".
return hcl.Traversal{
hcl.TraverseRoot{
Name: "null",
SrcRange: e.SrcRange,
},
}
}
switch e.Val {
case cty.True:
return hcl.Traversal{
hcl.TraverseRoot{
Name: "true",
SrcRange: e.SrcRange,
},
}
case cty.False:
return hcl.Traversal{
hcl.TraverseRoot{
Name: "false",
SrcRange: e.SrcRange,
},
}
default:
// No traversal is possible for any other value.
return nil
}
}
// ScopeTraversalExpr is an Expression that retrieves a value from the scope
// using a traversal.
type ScopeTraversalExpr struct {
Traversal hcl.Traversal
SrcRange hcl.Range
}
func (e *ScopeTraversalExpr) walkChildNodes(w internalWalkFunc) {
// Scope traversals have no child nodes
}
func (e *ScopeTraversalExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return e.Traversal.TraverseAbs(ctx)
}
func (e *ScopeTraversalExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *ScopeTraversalExpr) StartRange() hcl.Range {
return e.SrcRange
}
// Implementation for hcl.AbsTraversalForExpr.
func (e *ScopeTraversalExpr) AsTraversal() hcl.Traversal {
return e.Traversal
}
// RelativeTraversalExpr is an Expression that retrieves a value from another
// value using a _relative_ traversal.
type RelativeTraversalExpr struct {
Source Expression
Traversal hcl.Traversal
SrcRange hcl.Range
}
func (e *RelativeTraversalExpr) walkChildNodes(w internalWalkFunc) {
// Scope traversals have no child nodes
}
func (e *RelativeTraversalExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
src, diags := e.Source.Value(ctx)
ret, travDiags := e.Traversal.TraverseRel(src)
diags = append(diags, travDiags...)
return ret, diags
}
func (e *RelativeTraversalExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *RelativeTraversalExpr) StartRange() hcl.Range {
return e.SrcRange
}
// Implementation for hcl.AbsTraversalForExpr.
func (e *RelativeTraversalExpr) AsTraversal() hcl.Traversal {
// We can produce a traversal only if our source can.
st, diags := hcl.AbsTraversalForExpr(e.Source)
if diags.HasErrors() {
return nil
}
ret := make(hcl.Traversal, len(st)+len(e.Traversal))
copy(ret, st)
copy(ret[len(st):], e.Traversal)
return ret
}
// FunctionCallExpr is an Expression that calls a function from the EvalContext
// and returns its result.
type FunctionCallExpr struct {
Name string
Args []Expression
// If true, the final argument should be a tuple, list or set which will
// expand to be one argument per element.
ExpandFinal bool
NameRange hcl.Range
OpenParenRange hcl.Range
CloseParenRange hcl.Range
}
func (e *FunctionCallExpr) walkChildNodes(w internalWalkFunc) {
for i, arg := range e.Args {
e.Args[i] = w(arg).(Expression)
}
}
func (e *FunctionCallExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
var f function.Function
exists := false
hasNonNilMap := false
thisCtx := ctx
for thisCtx != nil {
if thisCtx.Functions == nil {
thisCtx = thisCtx.Parent()
continue
}
hasNonNilMap = true
f, exists = thisCtx.Functions[e.Name]
if exists {
break
}
thisCtx = thisCtx.Parent()
}
if !exists {
if !hasNonNilMap {
return cty.DynamicVal, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Function calls not allowed",
Detail: "Functions may not be called here.",
Subject: e.Range().Ptr(),
},
}
}
avail := make([]string, 0, len(ctx.Functions))
for name := range ctx.Functions {
avail = append(avail, name)
}
suggestion := nameSuggestion(e.Name, avail)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
}
return cty.DynamicVal, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Call to unknown function",
Detail: fmt.Sprintf("There is no function named %q.%s", e.Name, suggestion),
Subject: &e.NameRange,
Context: e.Range().Ptr(),
},
}
}
params := f.Params()
varParam := f.VarParam()
args := e.Args
if e.ExpandFinal {
if len(args) < 1 {
// should never happen if the parser is behaving
panic("ExpandFinal set on function call with no arguments")
}
expandExpr := args[len(args)-1]
expandVal, expandDiags := expandExpr.Value(ctx)
diags = append(diags, expandDiags...)
if expandDiags.HasErrors() {
return cty.DynamicVal, diags
}
switch {
case expandVal.Type().IsTupleType() || expandVal.Type().IsListType() || expandVal.Type().IsSetType():
if expandVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid expanding argument value",
Detail: "The expanding argument (indicated by ...) must not be null.",
Context: expandExpr.Range().Ptr(),
Subject: e.Range().Ptr(),
})
return cty.DynamicVal, diags
}
if !expandVal.IsKnown() {
return cty.DynamicVal, diags
}
newArgs := make([]Expression, 0, (len(args)-1)+expandVal.LengthInt())
newArgs = append(newArgs, args[:len(args)-1]...)
it := expandVal.ElementIterator()
for it.Next() {
_, val := it.Element()
newArgs = append(newArgs, &LiteralValueExpr{
Val: val,
SrcRange: expandExpr.Range(),
})
}
args = newArgs
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid expanding argument value",
Detail: "The expanding argument (indicated by ...) must be of a tuple, list, or set type.",
Context: expandExpr.Range().Ptr(),
Subject: e.Range().Ptr(),
})
return cty.DynamicVal, diags
}
}
if len(args) < len(params) {
missing := params[len(args)]
qual := ""
if varParam != nil {
qual = " at least"
}
return cty.DynamicVal, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Not enough function arguments",
Detail: fmt.Sprintf(
"Function %q expects%s %d argument(s). Missing value for %q.",
e.Name, qual, len(params), missing.Name,
),
Subject: &e.CloseParenRange,
Context: e.Range().Ptr(),
},
}
}
if varParam == nil && len(args) > len(params) {
return cty.DynamicVal, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Too many function arguments",
Detail: fmt.Sprintf(
"Function %q expects only %d argument(s).",
e.Name, len(params),
),
Subject: args[len(params)].StartRange().Ptr(),
Context: e.Range().Ptr(),
},
}
}
argVals := make([]cty.Value, len(args))
for i, argExpr := range args {
var param *function.Parameter
if i < len(params) {
param = &params[i]
} else {
param = varParam
}
val, argDiags := argExpr.Value(ctx)
if len(argDiags) > 0 {
diags = append(diags, argDiags...)
}
// Try to convert our value to the parameter type
val, err := convert.Convert(val, param.Type)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid function argument",
Detail: fmt.Sprintf(
"Invalid value for %q parameter: %s.",
param.Name, err,
),
Subject: argExpr.StartRange().Ptr(),
Context: e.Range().Ptr(),
})
}
argVals[i] = val
}
if diags.HasErrors() {
// Don't try to execute the function if we already have errors with
// the arguments, because the result will probably be a confusing
// error message.
return cty.DynamicVal, diags
}
resultVal, err := f.Call(argVals)
if err != nil {
switch terr := err.(type) {
case function.ArgError:
i := terr.Index
var param *function.Parameter
if i < len(params) {
param = &params[i]
} else {
param = varParam
}
argExpr := e.Args[i]
// TODO: we should also unpick a PathError here and show the
// path to the deep value where the error was detected.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid function argument",
Detail: fmt.Sprintf(
"Invalid value for %q parameter: %s.",
param.Name, err,
),
Subject: argExpr.StartRange().Ptr(),
Context: e.Range().Ptr(),
})
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Error in function call",
Detail: fmt.Sprintf(
"Call to function %q failed: %s.",
e.Name, err,
),
Subject: e.StartRange().Ptr(),
Context: e.Range().Ptr(),
})
}
return cty.DynamicVal, diags
}
return resultVal, diags
}
func (e *FunctionCallExpr) Range() hcl.Range {
return hcl.RangeBetween(e.NameRange, e.CloseParenRange)
}
func (e *FunctionCallExpr) StartRange() hcl.Range {
return hcl.RangeBetween(e.NameRange, e.OpenParenRange)
}
type ConditionalExpr struct {
Condition Expression
TrueResult Expression
FalseResult Expression
SrcRange hcl.Range
}
func (e *ConditionalExpr) walkChildNodes(w internalWalkFunc) {
e.Condition = w(e.Condition).(Expression)
e.TrueResult = w(e.TrueResult).(Expression)
e.FalseResult = w(e.FalseResult).(Expression)
}
func (e *ConditionalExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
trueResult, trueDiags := e.TrueResult.Value(ctx)
falseResult, falseDiags := e.FalseResult.Value(ctx)
var diags hcl.Diagnostics
// Try to find a type that both results can be converted to.
resultType, convs := convert.UnifyUnsafe([]cty.Type{trueResult.Type(), falseResult.Type()})
if resultType == cty.NilType {
return cty.DynamicVal, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Inconsistent conditional result types",
Detail: fmt.Sprintf(
// FIXME: Need a helper function for showing natural-language type diffs,
// since this will generate some useless messages in some cases, like
// "These expressions are object and object respectively" if the
// object types don't exactly match.
"The true and false result expressions must have consistent types. The given expressions are %s and %s, respectively.",
trueResult.Type(), falseResult.Type(),
),
Subject: hcl.RangeBetween(e.TrueResult.Range(), e.FalseResult.Range()).Ptr(),
Context: &e.SrcRange,
},
}
}
condResult, condDiags := e.Condition.Value(ctx)
diags = append(diags, condDiags...)
if condResult.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Null condition",
Detail: "The condition value is null. Conditions must either be true or false.",
Subject: e.Condition.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.UnknownVal(resultType), diags
}
if !condResult.IsKnown() {
return cty.UnknownVal(resultType), diags
}
condResult, err := convert.Convert(condResult, cty.Bool)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Incorrect condition type",
Detail: fmt.Sprintf("The condition expression must be of type bool."),
Subject: e.Condition.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.UnknownVal(resultType), diags
}
if condResult.True() {
diags = append(diags, trueDiags...)
if convs[0] != nil {
var err error
trueResult, err = convs[0](trueResult)
if err != nil {
// Unsafe conversion failed with the concrete result value
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Inconsistent conditional result types",
Detail: fmt.Sprintf(
"The true result value has the wrong type: %s.",
err.Error(),
),
Subject: e.TrueResult.Range().Ptr(),
Context: &e.SrcRange,
})
trueResult = cty.UnknownVal(resultType)
}
}
return trueResult, diags
} else {
diags = append(diags, falseDiags...)
if convs[1] != nil {
var err error
falseResult, err = convs[1](falseResult)
if err != nil {
// Unsafe conversion failed with the concrete result value
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Inconsistent conditional result types",
Detail: fmt.Sprintf(
"The false result value has the wrong type: %s.",
err.Error(),
),
Subject: e.TrueResult.Range().Ptr(),
Context: &e.SrcRange,
})
falseResult = cty.UnknownVal(resultType)
}
}
return falseResult, diags
}
}
func (e *ConditionalExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *ConditionalExpr) StartRange() hcl.Range {
return e.Condition.StartRange()
}
type IndexExpr struct {
Collection Expression
Key Expression
SrcRange hcl.Range
OpenRange hcl.Range
}
func (e *IndexExpr) walkChildNodes(w internalWalkFunc) {
e.Collection = w(e.Collection).(Expression)
e.Key = w(e.Key).(Expression)
}
func (e *IndexExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
coll, collDiags := e.Collection.Value(ctx)
key, keyDiags := e.Key.Value(ctx)
diags = append(diags, collDiags...)
diags = append(diags, keyDiags...)
return hcl.Index(coll, key, &e.SrcRange)
}
func (e *IndexExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *IndexExpr) StartRange() hcl.Range {
return e.OpenRange
}
type TupleConsExpr struct {
Exprs []Expression
SrcRange hcl.Range
OpenRange hcl.Range
}
func (e *TupleConsExpr) walkChildNodes(w internalWalkFunc) {
for i, expr := range e.Exprs {
e.Exprs[i] = w(expr).(Expression)
}
}
func (e *TupleConsExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var vals []cty.Value
var diags hcl.Diagnostics
vals = make([]cty.Value, len(e.Exprs))
for i, expr := range e.Exprs {
val, valDiags := expr.Value(ctx)
vals[i] = val
diags = append(diags, valDiags...)
}
return cty.TupleVal(vals), diags
}
func (e *TupleConsExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *TupleConsExpr) StartRange() hcl.Range {
return e.OpenRange
}
// Implementation for hcl.ExprList
func (e *TupleConsExpr) ExprList() []hcl.Expression {
ret := make([]hcl.Expression, len(e.Exprs))
for i, expr := range e.Exprs {
ret[i] = expr
}
return ret
}
type ObjectConsExpr struct {
Items []ObjectConsItem
SrcRange hcl.Range
OpenRange hcl.Range
}
type ObjectConsItem struct {
KeyExpr Expression
ValueExpr Expression
}
func (e *ObjectConsExpr) walkChildNodes(w internalWalkFunc) {
for i, item := range e.Items {
e.Items[i].KeyExpr = w(item.KeyExpr).(Expression)
e.Items[i].ValueExpr = w(item.ValueExpr).(Expression)
}
}
func (e *ObjectConsExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var vals map[string]cty.Value
var diags hcl.Diagnostics
// This will get set to true if we fail to produce any of our keys,
// either because they are actually unknown or if the evaluation produces
// errors. In all of these case we must return DynamicPseudoType because
// we're unable to know the full set of keys our object has, and thus
// we can't produce a complete value of the intended type.
//
// We still evaluate all of the item keys and values to make sure that we
// get as complete as possible a set of diagnostics.
known := true
vals = make(map[string]cty.Value, len(e.Items))
for _, item := range e.Items {
key, keyDiags := item.KeyExpr.Value(ctx)
diags = append(diags, keyDiags...)
val, valDiags := item.ValueExpr.Value(ctx)
diags = append(diags, valDiags...)
if keyDiags.HasErrors() {
known = false
continue
}
if key.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Null value as key",
Detail: "Can't use a null value as a key.",
Subject: item.ValueExpr.Range().Ptr(),
})
known = false
continue
}
var err error
key, err = convert.Convert(key, cty.String)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Incorrect key type",
Detail: fmt.Sprintf("Can't use this value as a key: %s.", err.Error()),
Subject: item.ValueExpr.Range().Ptr(),
})
known = false
continue
}
if !key.IsKnown() {
known = false
continue
}
keyStr := key.AsString()
vals[keyStr] = val
}
if !known {
return cty.DynamicVal, diags
}
return cty.ObjectVal(vals), diags
}
func (e *ObjectConsExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *ObjectConsExpr) StartRange() hcl.Range {
return e.OpenRange
}
// Implementation for hcl.ExprMap
func (e *ObjectConsExpr) ExprMap() []hcl.KeyValuePair {
ret := make([]hcl.KeyValuePair, len(e.Items))
for i, item := range e.Items {
ret[i] = hcl.KeyValuePair{
Key: item.KeyExpr,
Value: item.ValueExpr,
}
}
return ret
}
// ObjectConsKeyExpr is a special wrapper used only for ObjectConsExpr keys,
// which deals with the special case that a naked identifier in that position
// must be interpreted as a literal string rather than evaluated directly.
type ObjectConsKeyExpr struct {
Wrapped Expression
}
func (e *ObjectConsKeyExpr) literalName() string {
// This is our logic for deciding whether to behave like a literal string.
// We lean on our AbsTraversalForExpr implementation here, which already
// deals with some awkward cases like the expression being the result
// of the keywords "null", "true" and "false" which we'd want to interpret
// as keys here too.
return hcl.ExprAsKeyword(e.Wrapped)
}
func (e *ObjectConsKeyExpr) walkChildNodes(w internalWalkFunc) {
// We only treat our wrapped expression as a real expression if we're
// not going to interpret it as a literal.
if e.literalName() == "" {
e.Wrapped = w(e.Wrapped).(Expression)
}
}
func (e *ObjectConsKeyExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
if ln := e.literalName(); ln != "" {
return cty.StringVal(ln), nil
}
return e.Wrapped.Value(ctx)
}
func (e *ObjectConsKeyExpr) Range() hcl.Range {
return e.Wrapped.Range()
}
func (e *ObjectConsKeyExpr) StartRange() hcl.Range {
return e.Wrapped.StartRange()
}
// Implementation for hcl.AbsTraversalForExpr.
func (e *ObjectConsKeyExpr) AsTraversal() hcl.Traversal {
// We can produce a traversal only if our wrappee can.
st, diags := hcl.AbsTraversalForExpr(e.Wrapped)
if diags.HasErrors() {
return nil
}
return st
}
func (e *ObjectConsKeyExpr) UnwrapExpression() Expression {
return e.Wrapped
}
// ForExpr represents iteration constructs:
//
// tuple = [for i, v in list: upper(v) if i > 2]
// object = {for k, v in map: k => upper(v)}
// object_of_tuples = {for v in list: v.key: v...}
type ForExpr struct {
KeyVar string // empty if ignoring the key
ValVar string
CollExpr Expression
KeyExpr Expression // nil when producing a tuple
ValExpr Expression
CondExpr Expression // null if no "if" clause is present
Group bool // set if the ellipsis is used on the value in an object for
SrcRange hcl.Range
OpenRange hcl.Range
CloseRange hcl.Range
}
func (e *ForExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
collVal, collDiags := e.CollExpr.Value(ctx)
diags = append(diags, collDiags...)
if collVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Iteration over null value",
Detail: "A null value cannot be used as the collection in a 'for' expression.",
Subject: e.CollExpr.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.DynamicVal, diags
}
if collVal.Type() == cty.DynamicPseudoType {
return cty.DynamicVal, diags
}
if !collVal.CanIterateElements() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Iteration over non-iterable value",
Detail: fmt.Sprintf(
"A value of type %s cannot be used as the collection in a 'for' expression.",
collVal.Type().FriendlyName(),
),
Subject: e.CollExpr.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.DynamicVal, diags
}
if !collVal.IsKnown() {
return cty.DynamicVal, diags
}
childCtx := ctx.NewChild()
childCtx.Variables = map[string]cty.Value{}
// Before we start we'll do an early check to see if any CondExpr we've
// been given is of the wrong type. This isn't 100% reliable (it may
// be DynamicVal until real values are given) but it should catch some
// straightforward cases and prevent a barrage of repeated errors.
if e.CondExpr != nil {
if e.KeyVar != "" {
childCtx.Variables[e.KeyVar] = cty.DynamicVal
}
childCtx.Variables[e.ValVar] = cty.DynamicVal
result, condDiags := e.CondExpr.Value(childCtx)
diags = append(diags, condDiags...)
if result.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Condition is null",
Detail: "The value of the 'if' clause must not be null.",
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.DynamicVal, diags
}
_, err := convert.Convert(result, cty.Bool)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' condition",
Detail: fmt.Sprintf("The 'if' clause value is invalid: %s.", err.Error()),
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
return cty.DynamicVal, diags
}
if condDiags.HasErrors() {
return cty.DynamicVal, diags
}
}
if e.KeyExpr != nil {
// Producing an object
var vals map[string]cty.Value
var groupVals map[string][]cty.Value
if e.Group {
groupVals = map[string][]cty.Value{}
} else {
vals = map[string]cty.Value{}
}
it := collVal.ElementIterator()
known := true
for it.Next() {
k, v := it.Element()
if e.KeyVar != "" {
childCtx.Variables[e.KeyVar] = k
}
childCtx.Variables[e.ValVar] = v
if e.CondExpr != nil {
includeRaw, condDiags := e.CondExpr.Value(childCtx)
diags = append(diags, condDiags...)
if includeRaw.IsNull() {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Condition is null",
Detail: "The value of the 'if' clause must not be null.",
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
include, err := convert.Convert(includeRaw, cty.Bool)
if err != nil {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' condition",
Detail: fmt.Sprintf("The 'if' clause value is invalid: %s.", err.Error()),
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
if !include.IsKnown() {
known = false
continue
}
if include.False() {
// Skip this element
continue
}
}
keyRaw, keyDiags := e.KeyExpr.Value(childCtx)
diags = append(diags, keyDiags...)
if keyRaw.IsNull() {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid object key",
Detail: "Key expression in 'for' expression must not produce a null value.",
Subject: e.KeyExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
if !keyRaw.IsKnown() {
known = false
continue
}
key, err := convert.Convert(keyRaw, cty.String)
if err != nil {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid object key",
Detail: fmt.Sprintf("The key expression produced an invalid result: %s.", err.Error()),
Subject: e.KeyExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
val, valDiags := e.ValExpr.Value(childCtx)
diags = append(diags, valDiags...)
if e.Group {
k := key.AsString()
groupVals[k] = append(groupVals[k], val)
} else {
k := key.AsString()
if _, exists := vals[k]; exists {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Duplicate object key",
Detail: fmt.Sprintf(
"Two different items produced the key %q in this for expression. If duplicates are expected, use the ellipsis (...) after the value expression to enable grouping by key.",
k,
),
Subject: e.KeyExpr.Range().Ptr(),
Context: &e.SrcRange,
})
} else {
vals[key.AsString()] = val
}
}
}
if !known {
return cty.DynamicVal, diags
}
if e.Group {
vals = map[string]cty.Value{}
for k, gvs := range groupVals {
vals[k] = cty.TupleVal(gvs)
}
}
return cty.ObjectVal(vals), diags
} else {
// Producing a tuple
vals := []cty.Value{}
it := collVal.ElementIterator()
known := true
for it.Next() {
k, v := it.Element()
if e.KeyVar != "" {
childCtx.Variables[e.KeyVar] = k
}
childCtx.Variables[e.ValVar] = v
if e.CondExpr != nil {
includeRaw, condDiags := e.CondExpr.Value(childCtx)
diags = append(diags, condDiags...)
if includeRaw.IsNull() {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Condition is null",
Detail: "The value of the 'if' clause must not be null.",
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
if !includeRaw.IsKnown() {
// We will eventually return DynamicVal, but we'll continue
// iterating in case there are other diagnostics to gather
// for later elements.
known = false
continue
}
include, err := convert.Convert(includeRaw, cty.Bool)
if err != nil {
if known {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' condition",
Detail: fmt.Sprintf("The 'if' clause value is invalid: %s.", err.Error()),
Subject: e.CondExpr.Range().Ptr(),
Context: &e.SrcRange,
})
}
known = false
continue
}
if include.False() {
// Skip this element
continue
}
}
val, valDiags := e.ValExpr.Value(childCtx)
diags = append(diags, valDiags...)
vals = append(vals, val)
}
if !known {
return cty.DynamicVal, diags
}
return cty.TupleVal(vals), diags
}
}
func (e *ForExpr) walkChildNodes(w internalWalkFunc) {
e.CollExpr = w(e.CollExpr).(Expression)
scopeNames := map[string]struct{}{}
if e.KeyVar != "" {
scopeNames[e.KeyVar] = struct{}{}
}
if e.ValVar != "" {
scopeNames[e.ValVar] = struct{}{}
}
if e.KeyExpr != nil {
w(ChildScope{
LocalNames: scopeNames,
Expr: &e.KeyExpr,
})
}
w(ChildScope{
LocalNames: scopeNames,
Expr: &e.ValExpr,
})
if e.CondExpr != nil {
w(ChildScope{
LocalNames: scopeNames,
Expr: &e.CondExpr,
})
}
}
func (e *ForExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *ForExpr) StartRange() hcl.Range {
return e.OpenRange
}
type SplatExpr struct {
Source Expression
Each Expression
Item *AnonSymbolExpr
SrcRange hcl.Range
MarkerRange hcl.Range
}
func (e *SplatExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
sourceVal, diags := e.Source.Value(ctx)
if diags.HasErrors() {
// We'll evaluate our "Each" expression here just to see if it
// produces any more diagnostics we can report. Since we're not
// assigning a value to our AnonSymbolExpr here it will return
// DynamicVal, which should short-circuit any use of it.
_, itemDiags := e.Item.Value(ctx)
diags = append(diags, itemDiags...)
return cty.DynamicVal, diags
}
if sourceVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Splat of null value",
Detail: "Splat expressions (with the * symbol) cannot be applied to null values.",
Subject: e.Source.Range().Ptr(),
Context: hcl.RangeBetween(e.Source.Range(), e.MarkerRange).Ptr(),
})
return cty.DynamicVal, diags
}
if !sourceVal.IsKnown() {
return cty.DynamicVal, diags
}
// A "special power" of splat expressions is that they can be applied
// both to tuples/lists and to other values, and in the latter case
// the value will be treated as an implicit single-value list. We'll
// deal with that here first.
if !(sourceVal.Type().IsTupleType() || sourceVal.Type().IsListType()) {
sourceVal = cty.ListVal([]cty.Value{sourceVal})
}
vals := make([]cty.Value, 0, sourceVal.LengthInt())
it := sourceVal.ElementIterator()
if ctx == nil {
// we need a context to use our AnonSymbolExpr, so we'll just
// make an empty one here to use as a placeholder.
ctx = ctx.NewChild()
}
isKnown := true
for it.Next() {
_, sourceItem := it.Element()
e.Item.setValue(ctx, sourceItem)
newItem, itemDiags := e.Each.Value(ctx)
diags = append(diags, itemDiags...)
if itemDiags.HasErrors() {
isKnown = false
}
vals = append(vals, newItem)
}
e.Item.clearValue(ctx) // clean up our temporary value
if !isKnown {
return cty.DynamicVal, diags
}
return cty.TupleVal(vals), diags
}
func (e *SplatExpr) walkChildNodes(w internalWalkFunc) {
e.Source = w(e.Source).(Expression)
e.Each = w(e.Each).(Expression)
}
func (e *SplatExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *SplatExpr) StartRange() hcl.Range {
return e.MarkerRange
}
// AnonSymbolExpr is used as a placeholder for a value in an expression that
// can be applied dynamically to any value at runtime.
//
// This is a rather odd, synthetic expression. It is used as part of the
// representation of splat expressions as a placeholder for the current item
// being visited in the splat evaluation.
//
// AnonSymbolExpr cannot be evaluated in isolation. If its Value is called
// directly then cty.DynamicVal will be returned. Instead, it is evaluated
// in terms of another node (i.e. a splat expression) which temporarily
// assigns it a value.
type AnonSymbolExpr struct {
SrcRange hcl.Range
values map[*hcl.EvalContext]cty.Value
}
func (e *AnonSymbolExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
if ctx == nil {
return cty.DynamicVal, nil
}
val, exists := e.values[ctx]
if !exists {
return cty.DynamicVal, nil
}
return val, nil
}
// setValue sets a temporary local value for the expression when evaluated
// in the given context, which must be non-nil.
func (e *AnonSymbolExpr) setValue(ctx *hcl.EvalContext, val cty.Value) {
if e.values == nil {
e.values = make(map[*hcl.EvalContext]cty.Value)
}
if ctx == nil {
panic("can't setValue for a nil EvalContext")
}
e.values[ctx] = val
}
func (e *AnonSymbolExpr) clearValue(ctx *hcl.EvalContext) {
if e.values == nil {
return
}
if ctx == nil {
panic("can't clearValue for a nil EvalContext")
}
delete(e.values, ctx)
}
func (e *AnonSymbolExpr) walkChildNodes(w internalWalkFunc) {
// AnonSymbolExpr is a leaf node in the tree
}
func (e *AnonSymbolExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *AnonSymbolExpr) StartRange() hcl.Range {
return e.SrcRange
}