hcl/hclwrite/parser.go
Martin Atkins 77c0b55a59 hclwrite: Simplify internal data structures
The original prototype of hclwrite tried to track both the tokens and
the AST as two parallel data structures. This quickly exploded in
complexity, leading to lots of messy code to manage keeping those two
structures in sync.

This new approach melds the two structures together, creating first a
physical token tree (made of "node" objects, and hidden from the caller)
and then attaching the AST nodes to that token tree as additional sidecar
data.

The result is much easier to work with, leading to less code in the parser
and considerably less complex data structures in the parser's tests.

This commit is enough to reach feature parity with the previous prototype,
but it remains a prototype. With a more usable foundation, we'll evolve
this into a more complete implementation in subsequent commits.
2018-08-01 08:46:31 -07:00

596 lines
20 KiB
Go

package hclwrite
import (
"fmt"
"sort"
"github.com/hashicorp/hcl2/hcl"
"github.com/hashicorp/hcl2/hcl/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
// Our "parser" here is actually not doing any parsing of its own. Instead,
// it leans on the native parser in hclsyntax, and then uses the source ranges
// from the AST to partition the raw token sequence to match the raw tokens
// up to AST nodes.
//
// This strategy feels somewhat counter-intuitive, since most of the work the
// parser does is thrown away here, but this strategy is chosen because the
// normal parsing work done by hclsyntax is considered to be the "main case",
// while modifying and re-printing source is more of an edge case, used only
// in ancillary tools, and so it's good to keep all the main parsing logic
// with the main case but keep all of the extra complexity of token wrangling
// out of the main parser, which is already rather complex just serving the
// use-cases it already serves.
//
// If the parsing step produces any errors, the returned File is nil because
// we can't reliably extract tokens from the partial AST produced by an
// erroneous parse.
func parse(src []byte, filename string, start hcl.Pos) (*File, hcl.Diagnostics) {
file, diags := hclsyntax.ParseConfig(src, filename, start)
if diags.HasErrors() {
return nil, diags
}
// To do our work here, we use the "native" tokens (those from hclsyntax)
// to match against source ranges in the AST, but ultimately produce
// slices from our sequence of "writer" tokens, which contain only
// *relative* position information that is more appropriate for
// transformation/writing use-cases.
nativeTokens, diags := hclsyntax.LexConfig(src, filename, start)
if diags.HasErrors() {
// should never happen, since we would've caught these diags in
// the first call above.
return nil, diags
}
writerTokens := writerTokens(nativeTokens)
from := inputTokens{
nativeTokens: nativeTokens,
writerTokens: writerTokens,
}
before, root, after := parseBody(file.Body.(*hclsyntax.Body), from)
ret := &File{
inTree: newInTree(),
srcBytes: src,
body: root,
}
nodes := ret.inTree.children
nodes.Append(before.Tokens())
nodes.AppendNode(root)
nodes.Append(after.Tokens())
return ret, diags
}
type inputTokens struct {
nativeTokens hclsyntax.Tokens
writerTokens Tokens
}
func (it inputTokens) Partition(rng hcl.Range) (before, within, after inputTokens) {
start, end := partitionTokens(it.nativeTokens, rng)
before = it.Slice(0, start)
within = it.Slice(start, end)
after = it.Slice(end, len(it.nativeTokens))
return
}
func (it inputTokens) PartitionType(ty hclsyntax.TokenType) (before, within, after inputTokens) {
for i, t := range it.writerTokens {
if t.Type == ty {
return it.Slice(0, i), it.Slice(i, i+1), it.Slice(i+1, len(it.nativeTokens))
}
}
panic(fmt.Sprintf("didn't find any token of type %s", ty))
}
func (it inputTokens) PartitionTypeSingle(ty hclsyntax.TokenType) (before inputTokens, found *Token, after inputTokens) {
before, within, after := it.PartitionType(ty)
if within.Len() != 1 {
panic("PartitionType found more than one token")
}
return before, within.Tokens()[0], after
}
// PartitionIncludeComments is like Partition except the returned "within"
// range includes any lead and line comments associated with the range.
func (it inputTokens) PartitionIncludingComments(rng hcl.Range) (before, within, after inputTokens) {
start, end := partitionTokens(it.nativeTokens, rng)
start = partitionLeadCommentTokens(it.nativeTokens[:start])
_, afterNewline := partitionLineEndTokens(it.nativeTokens[end:])
end += afterNewline
before = it.Slice(0, start)
within = it.Slice(start, end)
after = it.Slice(end, len(it.nativeTokens))
return
}
// PartitionBlockItem is similar to PartitionIncludeComments but it returns
// the comments as separate token sequences so that they can be captured into
// AST attributes. It makes assumptions that apply only to block items, so
// should not be used for other constructs.
func (it inputTokens) PartitionBlockItem(rng hcl.Range) (before, leadComments, within, lineComments, newline, after inputTokens) {
before, within, after = it.Partition(rng)
before, leadComments = before.PartitionLeadComments()
lineComments, newline, after = after.PartitionLineEndTokens()
return
}
func (it inputTokens) PartitionLeadComments() (before, within inputTokens) {
start := partitionLeadCommentTokens(it.nativeTokens)
before = it.Slice(0, start)
within = it.Slice(start, len(it.nativeTokens))
return
}
func (it inputTokens) PartitionLineEndTokens() (comments, newline, after inputTokens) {
afterComments, afterNewline := partitionLineEndTokens(it.nativeTokens)
comments = it.Slice(0, afterComments)
newline = it.Slice(afterComments, afterNewline)
after = it.Slice(afterNewline, len(it.nativeTokens))
return
}
func (it inputTokens) Slice(start, end int) inputTokens {
// When we slice, we create a new slice with no additional capacity because
// we expect that these slices will be mutated in order to insert
// new code into the AST, and we want to ensure that a new underlying
// array gets allocated in that case, rather than writing into some
// following slice and corrupting it.
return inputTokens{
nativeTokens: it.nativeTokens[start:end:end],
writerTokens: it.writerTokens[start:end:end],
}
}
func (it inputTokens) Len() int {
return len(it.nativeTokens)
}
func (it inputTokens) Tokens() Tokens {
return it.writerTokens
}
func (it inputTokens) Types() []hclsyntax.TokenType {
ret := make([]hclsyntax.TokenType, len(it.nativeTokens))
for i, tok := range it.nativeTokens {
ret[i] = tok.Type
}
return ret
}
// parseBody locates the given body within the given input tokens and returns
// the resulting *Body object as well as the tokens that appeared before and
// after it.
func parseBody(nativeBody *hclsyntax.Body, from inputTokens) (inputTokens, *node, inputTokens) {
before, within, after := from.PartitionIncludingComments(nativeBody.SrcRange)
// The main AST doesn't retain the original source ordering of the
// body items, so we need to reconstruct that ordering by inspecting
// their source ranges.
nativeItems := make([]hclsyntax.Node, 0, len(nativeBody.Attributes)+len(nativeBody.Blocks))
for _, nativeAttr := range nativeBody.Attributes {
nativeItems = append(nativeItems, nativeAttr)
}
for _, nativeBlock := range nativeBody.Blocks {
nativeItems = append(nativeItems, nativeBlock)
}
sort.Sort(nativeNodeSorter{nativeItems})
body := &Body{
inTree: newInTree(),
indentLevel: 0, // TODO: deal with this
items: newNodeSet(),
}
remain := within
for _, nativeItem := range nativeItems {
beforeItem, item, afterItem := parseBodyItem(nativeItem, remain)
if beforeItem.Len() > 0 {
body.AppendUnstructuredTokens(beforeItem.Tokens())
}
body.appendItem(item)
remain = afterItem
}
if remain.Len() > 0 {
body.AppendUnstructuredTokens(remain.Tokens())
}
return before, newNode(body), after
}
func parseBodyItem(nativeItem hclsyntax.Node, from inputTokens) (inputTokens, *node, inputTokens) {
before, leadComments, within, lineComments, newline, after := from.PartitionBlockItem(nativeItem.Range())
var item *node
switch tItem := nativeItem.(type) {
case *hclsyntax.Attribute:
item = parseAttribute(tItem, within, leadComments, lineComments, newline)
case *hclsyntax.Block:
item = parseBlock(tItem, within, leadComments, lineComments, newline)
default:
// should never happen if caller is behaving
panic("unsupported native item type")
}
return before, item, after
}
func parseAttribute(nativeAttr *hclsyntax.Attribute, from, leadComments, lineComments, newline inputTokens) *node {
attr := &Attribute{
inTree: newInTree(),
}
children := attr.inTree.children
{
cn := newNode(newComments(leadComments.Tokens()))
attr.leadComments = cn
children.AppendNode(cn)
}
before, nameTokens, from := from.Partition(nativeAttr.NameRange)
{
children.AppendUnstructuredTokens(before.Tokens())
if nameTokens.Len() != 1 {
// Should never happen with valid input
panic("attribute name is not exactly one token")
}
token := nameTokens.Tokens()[0]
in := newNode(newIdentifier(token))
attr.name = in
children.AppendNode(in)
}
before, equalsTokens, from := from.Partition(nativeAttr.EqualsRange)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendUnstructuredTokens(equalsTokens.Tokens())
before, exprTokens, from := from.Partition(nativeAttr.Expr.Range())
{
children.AppendUnstructuredTokens(before.Tokens())
exprNode := parseExpression(nativeAttr.Expr, exprTokens)
attr.expr = exprNode
children.AppendNode(exprNode)
}
{
cn := newNode(newComments(lineComments.Tokens()))
attr.lineComments = cn
children.AppendNode(cn)
}
children.AppendUnstructuredTokens(newline.Tokens())
// Collect any stragglers, though there shouldn't be any
children.AppendUnstructuredTokens(from.Tokens())
return newNode(attr)
}
func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *node {
block := &Block{
inTree: newInTree(),
labels: newNodeSet(),
}
children := block.inTree.children
{
cn := newNode(newComments(leadComments.Tokens()))
block.leadComments = cn
children.AppendNode(cn)
}
before, typeTokens, from := from.Partition(nativeBlock.TypeRange)
{
children.AppendUnstructuredTokens(before.Tokens())
if typeTokens.Len() != 1 {
// Should never happen with valid input
panic("block type name is not exactly one token")
}
token := typeTokens.Tokens()[0]
in := newNode(newIdentifier(token))
block.typeName = in
children.AppendNode(in)
}
for _, rng := range nativeBlock.LabelRanges {
var labelTokens inputTokens
before, labelTokens, from = from.Partition(rng)
children.AppendUnstructuredTokens(before.Tokens())
tokens := labelTokens.Tokens()
ln := newNode(newQuoted(tokens))
block.labels.Add(ln)
children.AppendNode(ln)
}
before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendUnstructuredTokens(oBrace.Tokens())
// We go a bit out of order here: we go hunting for the closing brace
// so that we have a delimited body, but then we'll deal with the body
// before we actually append the closing brace and any straggling tokens
// that appear after it.
bodyTokens, cBrace, from := from.Partition(nativeBlock.CloseBraceRange)
before, body, after := parseBody(nativeBlock.Body, bodyTokens)
children.AppendUnstructuredTokens(before.Tokens())
block.body = body
children.AppendNode(body)
children.AppendUnstructuredTokens(after.Tokens())
children.AppendUnstructuredTokens(cBrace.Tokens())
// stragglers
children.AppendUnstructuredTokens(from.Tokens())
if lineComments.Len() > 0 {
// blocks don't actually have line comments, so we'll just treat
// them as extra stragglers
children.AppendUnstructuredTokens(lineComments.Tokens())
}
children.AppendUnstructuredTokens(newline.Tokens())
return newNode(block)
}
func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *node {
expr := newExpression()
children := expr.inTree.children
nativeVars := nativeExpr.Variables()
for _, nativeTraversal := range nativeVars {
before, traversal, after := parseTraversal(nativeTraversal, from)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendNode(traversal)
expr.absTraversals.Add(traversal)
from = after
}
// Attach any stragglers that don't belong to a traversal to the expression
// itself. In an expression with no traversals at all, this is just the
// entirety of "from".
children.AppendUnstructuredTokens(from.Tokens())
return newNode(expr)
}
func parseTraversal(nativeTraversal hcl.Traversal, from inputTokens) (before inputTokens, n *node, after inputTokens) {
traversal := newTraversal()
children := traversal.inTree.children
before, from, after = from.Partition(nativeTraversal.SourceRange())
stepAfter := from
for _, nativeStep := range nativeTraversal {
before, step, after := parseTraversalStep(nativeStep, stepAfter)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendNode(step)
stepAfter = after
}
return before, newNode(traversal), after
}
func parseTraversalStep(nativeStep hcl.Traverser, from inputTokens) (before inputTokens, n *node, after inputTokens) {
var children *nodes
switch tNativeStep := nativeStep.(type) {
case hcl.TraverseRoot, hcl.TraverseAttr:
step := newTraverseName()
children = step.inTree.children
before, from, after = from.Partition(nativeStep.SourceRange())
inBefore, token, inAfter := from.PartitionTypeSingle(hclsyntax.TokenIdent)
name := newIdentifier(token)
children.AppendUnstructuredTokens(inBefore.Tokens())
step.name = children.Append(name)
children.AppendUnstructuredTokens(inAfter.Tokens())
return before, newNode(step), after
case hcl.TraverseIndex:
step := newTraverseIndex()
children = step.inTree.children
before, from, after = from.Partition(nativeStep.SourceRange())
var inBefore, oBrack, keyTokens, cBrack inputTokens
inBefore, oBrack, from = from.PartitionType(hclsyntax.TokenOBrack)
children.AppendUnstructuredTokens(inBefore.Tokens())
children.AppendUnstructuredTokens(oBrack.Tokens())
keyTokens, cBrack, from = from.PartitionType(hclsyntax.TokenCBrack)
keyVal := tNativeStep.Key
switch keyVal.Type() {
case cty.String:
key := newQuoted(keyTokens.Tokens())
step.key = children.Append(key)
case cty.Number:
valBefore, valToken, valAfter := keyTokens.PartitionTypeSingle(hclsyntax.TokenNumberLit)
children.AppendUnstructuredTokens(valBefore.Tokens())
key := newNumber(valToken)
step.key = children.Append(key)
children.AppendUnstructuredTokens(valAfter.Tokens())
}
children.AppendUnstructuredTokens(cBrack.Tokens())
children.AppendUnstructuredTokens(from.Tokens())
return before, newNode(step), after
default:
panic(fmt.Sprintf("unsupported traversal step type %T", nativeStep))
}
}
// writerTokens takes a sequence of tokens as produced by the main hclsyntax
// package and transforms it into an equivalent sequence of tokens using
// this package's own token model.
//
// The resulting list contains the same number of tokens and uses the same
// indices as the input, allowing the two sets of tokens to be correlated
// by index.
func writerTokens(nativeTokens hclsyntax.Tokens) Tokens {
// Ultimately we want a slice of token _pointers_, but since we can
// predict how much memory we're going to devote to tokens we'll allocate
// it all as a single flat buffer and thus give the GC less work to do.
tokBuf := make([]Token, len(nativeTokens))
var lastByteOffset int
for i, mainToken := range nativeTokens {
// Create a copy of the bytes so that we can mutate without
// corrupting the original token stream.
bytes := make([]byte, len(mainToken.Bytes))
copy(bytes, mainToken.Bytes)
tokBuf[i] = Token{
Type: mainToken.Type,
Bytes: bytes,
// We assume here that spaces are always ASCII spaces, since
// that's what the scanner also assumes, and thus the number
// of bytes skipped is also the number of space characters.
SpacesBefore: mainToken.Range.Start.Byte - lastByteOffset,
}
lastByteOffset = mainToken.Range.End.Byte
}
// Now make a slice of pointers into the previous slice.
ret := make(Tokens, len(tokBuf))
for i := range ret {
ret[i] = &tokBuf[i]
}
return ret
}
// partitionTokens takes a sequence of tokens and a hcl.Range and returns
// two indices within the token sequence that correspond with the range
// boundaries, such that the slice operator could be used to produce
// three token sequences for before, within, and after respectively:
//
// start, end := partitionTokens(toks, rng)
// before := toks[:start]
// within := toks[start:end]
// after := toks[end:]
//
// This works best when the range is aligned with token boundaries (e.g.
// because it was produced in terms of the scanner's result) but if that isn't
// true then it will make a best effort that may produce strange results at
// the boundaries.
//
// Native hclsyntax tokens are used here, because they contain the necessary
// absolute position information. However, since writerTokens produces a
// correlatable sequence of writer tokens, the resulting indices can be
// used also to index into its result, allowing the partitioning of writer
// tokens to be driven by the partitioning of native tokens.
//
// The tokens are assumed to be in source order and non-overlapping, which
// will be true if the token sequence from the scanner is used directly.
func partitionTokens(toks hclsyntax.Tokens, rng hcl.Range) (start, end int) {
// We us a linear search here because we assume tha in most cases our
// target range is close to the beginning of the sequence, and the seqences
// are generally small for most reasonable files anyway.
for i := 0; ; i++ {
if i >= len(toks) {
// No tokens for the given range at all!
return len(toks), len(toks)
}
if toks[i].Range.Start.Byte >= rng.Start.Byte {
start = i
break
}
}
for i := start; ; i++ {
if i >= len(toks) {
// The range "hangs off" the end of the token sequence
return start, len(toks)
}
if toks[i].Range.Start.Byte >= rng.End.Byte {
end = i // end marker is exclusive
break
}
}
return start, end
}
// partitionLeadCommentTokens takes a sequence of tokens that is assumed
// to immediately precede a construct that can have lead comment tokens,
// and returns the index into that sequence where the lead comments begin.
//
// Lead comments are defined as whole lines containing only comment tokens
// with no blank lines between. If no such lines are found, the returned
// index will be len(toks).
func partitionLeadCommentTokens(toks hclsyntax.Tokens) int {
// single-line comments (which is what we're interested in here)
// consume their trailing newline, so we can just walk backwards
// until we stop seeing comment tokens.
for i := len(toks) - 1; i >= 0; i-- {
if toks[i].Type != hclsyntax.TokenComment {
return i + 1
}
}
return 0
}
// partitionLineEndTokens takes a sequence of tokens that is assumed
// to immediately follow a construct that can have a line comment, and
// returns first the index where any line comments end and then second
// the index immediately after the trailing newline.
//
// Line comments are defined as comments that appear immediately after
// a construct on the same line where its significant tokens ended.
//
// Since single-line comment tokens (# and //) include the newline that
// terminates them, in the presence of these the two returned indices
// will be the same since the comment itself serves as the line end.
func partitionLineEndTokens(toks hclsyntax.Tokens) (afterComment, afterNewline int) {
for i := 0; i < len(toks); i++ {
tok := toks[i]
if tok.Type != hclsyntax.TokenComment {
switch tok.Type {
case hclsyntax.TokenNewline:
return i, i + 1
case hclsyntax.TokenEOF:
// Although this is valid, we mustn't include the EOF
// itself as our "newline" or else strange things will
// happen when we try to append new items.
return i, i
default:
// If we have well-formed input here then nothing else should be
// possible. This path should never happen, because we only try
// to extract tokens from the sequence if the parser succeeded,
// and it should catch this problem itself.
panic("malformed line trailers: expected only comments and newlines")
}
}
if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' {
// Newline at the end of a single-line comment serves both as
// the end of comments *and* the end of the line.
return i + 1, i + 1
}
}
return len(toks), len(toks)
}
// lexConfig uses the hclsyntax scanner to get a token stream and then
// rewrites it into this package's token model.
//
// Any errors produced during scanning are ignored, so the results of this
// function should be used with care.
func lexConfig(src []byte) Tokens {
mainTokens, _ := hclsyntax.LexConfig(src, "", hcl.Pos{Byte: 0, Line: 1, Column: 1})
return writerTokens(mainTokens)
}