Terraform interprets HIL variables in such a way that it allows numeric
attribute names which then get interpreted as numeric indices into a
list. This is used to work around the fact that the splat expressions
don't work for the index operator.
zcl has "full splats" that _do_ support the index operator, but to allow
old Terraform configs to be processed by zcl we'll accept this special
case within attribute-only-splats only.
For the moment this is a special exception made by this specific
implementation of zcl rather than part of the spec, since it's
specifically a pragmatic Terraform migration strategy, but it might get
upgraded to full spec status later if we end up needing to support it
in other host languages.
This requires the scanner to be a little more picky about the ending
of numeric literals, so that they won't absorb the trailing period after
the number in foo.*.baz.1.baz . This is okay because the spec doesn't
allow trailing periods anyway, and this is not actually a change in
final behavior because the parser was already catching this situation
and rejecting it at a later point.
While this does create some ambiguity with arithmetic on variables, like
a-b, this is permitted by HCL and so we'll permit it for zcl too, at the
expense of requiring spaces to be used around minus signs for correct
interpretation.
This uses a subset of the expression syntax to allow representations of
traversals. The use-case for this is in applications that need to support
references to objects using familiar syntax without actually evaluating
those objects or dealing with the complexity of arbitrary expression
syntax.
This further alters the object-construction mode so that rather than
producing a flat object it instead produces an object of tuples. All
items that produce the same key are grouped together under the same
key in the result, allowing projections that flip the orientation of
a key/value sequence where the new keys are not necessarily unique.
Rather than setting an "Unwrap" field on the existing TemplateExpr, we'll
instead use a separate, simpler AST node.
There is very little in common between these two cases, so overloading the
TemplateExpr node doesn't buy much. A separate node is needed here,
rather than just returning the wrapped node directly, to give us somewhere
to capture the full source range extent of the wrapping template, whereas
the inner expression only captures the range of itself. This is important
both for good diagnostics and for transforming zclsyntax AST into
zclwrite AST.
Previously it was !{, but in real examples this looked confusing since
an exclamation point after a word looks (to humans) like literal
punctuation rather than syntax.
% is not ideal either since it's also the marker traditionally used for
printf, but has the advantage that programmers are already primed for it
to be syntax.
Previously we tried to do the whole template parse in one pass. This was
adequate for dealing with literals and interpolations because they
create a flat structure, but to parse the template control sequences we
need to be able to deal with nested template sequences.
As a building block towards this, we first do a pass of extracting the
template-level "tokens": literals, interpolations, control sequences.
We then pass over that sequence of tokens and parse it, which is then
simplified because the larger template atoms have already been produced.
Attribute-only splat expressions cannot have other splats nested inside,
since we're only interested in supporting how these behaved for HIL when
running inside Hashicorp Terraform. More complex cases should be dealt
with using either full splats (bracketed *) or "for" expressions.
Attribute-only splat expressions, indicated by using the star symbol as
if it were an attribute, are inherited from HIL and are a limited sort of
splat that only works for walking through attributes in each item of its
source.
Later zcl will also get full splat expressions, whose syntax is using
the star symbol as if it were an _index_, which will generalize to
supporting _all_ postfix traversal operations, including indexing and
nested splats.
If we can't find a function in the given EvalContext, we must traverse
the context chain until either we run out of contexts or we find a
matching function.
At present there is no reason for a non-root context to have any
functions, so this will always traverse to the root. This may change in
future if we introduce constructs that define local functions.
This syntax func(arg...) allows the final argument to be a sequence-typed
value that then expands to be one argument for each element of the
value.
This allows applications to define variadic functions where that's
user-friendly while still allowing users to pass tuples to those functions
in situations where the args are chosen dynamically.
The purpose of the Variables function is to tell a calling application
what symbols need to be present in the _root_ scope, so it would be
unhelpful to include child scope traversals. Child scopes are populated
by the nodes that create them, and are thus not interesting to the
calling application (for this purpose, at least).
The ForExpr is essentially a list/map comprehension, allowing projecting
one expression into another. From a syntactic standpoint it's the most
complex structure we've dealt with so far, with many separate parts.
The tests introduced here are not exhaustive but illustrate that the
basic mechanism is working.
Previously operations were an enum, but we've ended up needing to store
a collection of values against each, so an operation being a pointer to
a struct feels more natural.
This in turn allows us to more easily fix the return types of the
operations, so that we don't need to do any unusual work to understand
that (for example) arithmetic always returns a number.
Previously we were detecting the exactly-one-part case at parse time and
skipping the TemplateExpr node in the AST, but this was problematic
because we then misaligned the source range for the expression to the
_content_ of the quotes, rather than including the quotes themselves.
As well as producing confusing diagnostics, this also caused problems for
zclwrite since it relies on source ranges to map our AST back onto the
source tokens it came from.
Previously we tolerated EOF as an alias for newline, but a file without
a newline at the end is a edge case primarily limited to contrived
examples in unit tests, and requiring it simplifies tasks such as code
generation in zclwrite, since we can always assume that every block item
comes with a built-in line terminator.
When we're skipping comments but retaining newlines, we need to do some
slight-of-hand because single-line comment tokens contain the newline
that terminates them (for simpler handling of lead doc comments) but our
parsing can be newline-sensitive.
To allow for this, as a special case we transform single-line comment
tokens into newlines when in this situation, thus allowing parser code
to just worry about the newlines and skip over the comments.
The native parser's ranges don't include any surrounding comments, so we
need to do a little more work to pick them out of the surrounding token
sequences.
This just takes care of _lead_ comments, which are those that appear as
whole line comments above the item in question. Line comments, which
appear after the item on the same line, will follow in a later commit.
This can either be a traversal or a first-class node depending on whether
the given expression is a literal. This exception is made to allow
applications to conditionally populate only part of a potentially-large
collection if the config is only requesting one or two distinct indices.
In particular, it allows the following to be considered a single traversal
from the scope:
foo.bar[0].baz
stringer is more sensitive to certain errors than other generators, so
by running it last we give the other generators a chance to get things
straight before we ask stringer to run.
Traversal operators are the operators that can appear after a value
to traverse into the data structure that value represents. So far only
the attribute access operator is implemented.
This allows tooling to get a string describing the context of a particular
offset into the file. This is used, for example, to provide context
above the source code snippets in console-printed diagnostic messages.
There are certain tokens that are _never_ valid, so we might as well
catch them early in the Lex... functions rather than having to handle
them in many different contexts within the parser.
Unfortunately for now when such errors occur they tend to be echoed by
more confusing errors coming from the parser, but we'll accept that for
now.
This allows code that only deals with BodyContent (post-decoding) to
still be able to report on missing items within the associated body while
providing a suitable source location.